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Problem

Tasks:
(1) Behaviour Profiling; (2) Behaviour Query; (3) Classification; (4) Summarization

Multi-Scene Surveillance System
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Conventional Approaches

Approaches
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Q \@ « Exhaustively annotate each scene
® « Train independent models
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e Discover related scenes
e Discover similar activities
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 Cross—-scene query
« Multi-scene
summarization
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Multi-Scene Approach

» Challenges

(»  Compute Scene Relatedness
) Selective Sharing Information

3) Construct a Shared Representation

> Scene Level Clustering > > Scenes in one Cluster >
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< Addressed Problems

< < Behaviour as Shared Profile < < Shared Representation <

Cross-Scene Query by
Example

Cross-Scene
Classification

Multi-Scene Video
Summarization
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Local Activities

Learning Local Activities

> Scenes in one Cluster >
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Cross-Scene Query
by Example

Cross-Scene
Classification
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Local Activities

Accumulated Optical Flow




Local Activities

» Latent Dirichlet Allocation (LDA)

o Dirichlet Prior (

Topics/Activities

Activity Distribution
~Dir(a’) in a Video
Clip/Document

009

J=1.. Ny

Y; ~Multinomial(6; ) Activity indicator o
Variational Inference to
Estimate v and S given
lots of observed video
clips

X, ~ Multinomial( " ; y; ) Quantized Optical
Flow Vector




Local Activities

» Examples of Local Activities S




Multi-Layer Clustering

Cluster Scenes and learn Shared Topic Basis

Scene Level Clustering > > Scenes in one Cluster >
(

< Addressed Problems < < Behaviour as Shared Profile < < Shared Representation <
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Cross-Scene Query by
Example

Cross-Scene Classification
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Multi-Layer Clustering
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Surveillance
video scenes
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Scene Alignment

» Scaling and Translation to align two scenes to remove cross-
scene variance

A
Scene A m Scene A
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Scene B

o > Scene B aligned
= to Scene A
ﬁscorel_ Align >
Oormal 'lee Scene B to
ptical Flow Scene A
Vectors



Scene Level Clustering

» Scene Relatedness Measurement

#Activities=6 #Activities=7 #Activities=5

#Activities=4




Scene Level Clustering

» Scene Relatedness Measurement

#Activities=6 #Activities=7 #Activities=5

b A

Relatedness: (6+6)/(6+7)=0.92 (3+3)/(7+5)=0.5 (4+4)/(5+4)=0.89




Scene Level Clustering

» Scene Relatedness Measure

#Activities=6 #Activities=7 #Activities=5 #Activities=4

= H =

Relatedness: (6+6)/(6+7)=0.92 (3+3)/(7+5)=0.5 (4+4)/(5+4)=0.89

» Scene Level Clustering
» Spectral clustering is used to cluster scenes 5

101
151

20

251




Learning A Shared Topic Basis

» A single Shared Topic Basis is learned per
scene cluster




Surveillance
video scenes
s=71..8
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Behaviour as Shared Profile

> Local Representations > > Scene Level Clustering > > Scenes in one Cluster >
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Behaviour as Shared Profile

Each clip is represented as a multinomial distribution

S‘I:(!S Profile y as Bar Chart
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Addressed Problems

> Local Representations > > Scene Level Clustering > > Scenes in one Cluster >
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Cross-Scene Query

Retrieve relevant video clips from other scenes by providing a
query clip. L2 or cosine distance is computed on STB profile.
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Cross—-Scene Classification

» Predict the label of a clip in a new scene given
training data from other scenes

Training Data

Scene 1 Scene 2

Testing Data

Knn Classifier

Behav 1

Scene 3

Behav 3




Multi-Scene Summarization

» Select K clips to cover as many unique behaviours as possible

. _ . - .:jtb .?"i;b
Kcenter Clustering: 7/ =72 (;”gg Dy (757775 ))

Select K clips that minimize the farthest distance from any candidate clip to the
closest selected clip. Kcenter is good at keeping outliers.

Original Data Kmeans Result Kcenter Result
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Experiment Settings

» Dataset

» 27 real traffic surveillance scenes

» Each with 18000 frames in 10 fps. 9000 frames for training and rest for
testing

» LDA settings:

» Optical flow quantize into 8 directions

» 25 frames per clip/document (360 clips per scene)
» # topics = 15

» Application Settings:

» 80 frames per clip/document (112 clips per scene)
» Annotations:

» 6 scenes from two clusters are annotated into 31/59 categories of
behaviours




Multi-Scene Profiling

Il Vertical Vehicle and Tram (VVT)

= Vertical Vehicle (VV)

Active Activities in Scene 1

Active Activities in Scene 2

Multi-Scene Profiling
Profiling based on Shared Activity Basis

Tram Down (TD)

Bl Pedestrian and Vehicle Up (PVU)

" Horizontal Pedestrian (HP)

= Horizontal Vehicle (HV)

I Horizontal Pedestrian and Vehicle Up (HPVU)

:

Active Activities in Scene 3

Active Activities in Scene 4

I Vehicle Right
Horizontal Vehicles
I Vertical Vehicles
m Vertical Vehicles & Tram Down
B Vehicle Left

m Vehicle Down

Vertical and Down Pedestrian
= Vertical Vehicles
I Vehicle Down & Tram Down
= Vehicle Up & Pedestrian Up

m Vertical Vehicles
Left Vehicles & Right to Down Turn
= Vertical Vehicles & Tram Down
I Venhicle Left
I Vehicle Right & Left to Up Turn

Il Up to Right Turn
Vehicle Left
[ Vertical Vehicle & Tram Down
m Vertical Vehicles
I Vehicle Down




Cross-Scene Query

Query Videos Cross-Domain Retrieved Videos

query from scene 1
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Cross-Scene Query

» Comparison of Models:
» Flat Model (FM): without multi-layer clustering.
» Our Scene Cluster Model (SCM): with multi-layer clustering.
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Evaluation: Mean Average Precision for first T retrievals
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Cross-Scene Classification

» Settings: Leave-One-Out Cross-Validation
» Evaluation: Average Accuracy
» Comparison of Models:

» Flat Model (FM): without multi-layer clustering.
» Our Scene Cluster Model (SCM): with multi-layer clustering.

Category 31 59
SCM FM SCM FM

Scene 1 55.36 % 50.89% 42.86 % 40.18%
Scene 2 27.68% 39.29% 18.75% 16.96%
Scene 3 49.11% 41.96% 39.29% 37.50%
Scene 4 54.46 % 46.43% 37.50 % 36.61%
Scene 5 30.36% 26.79% 17.86 % 17.86 %
Scene 6 38.39% 25.00% 20.54 % 12.50%
Average 42.56 % 38.39% 29.47 % 26.94%




Multi-Scene Summarization

v Vv vV Vv

Settings: Select K clips from all video clip across 6 scenes

Evaluation: The percentage of covered unique behaviours in
summary

Comparison of Scene Model:

Single Scene: concatenate summary from each single scene
Flat Model (FM): without multi-layer clustering.

Our Scene Cluster Model (SCM): with multi-layer clustering.

Comparison of Summarization Models:
Random

User Attention

Graph Cut




Multi-Scene Summarization

» Scene Cluster 3 (4 scenes in total)
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Multi-Scene Summarization

» Scene Cluster 7 (2 scenes in total)
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Multi-Scene Summarization

» Across Scene Cluster 3 and 7 (6 scenes in total)
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Multi-Scene Summarization

— Original Videos Multi-Scene Summary Videos

origin video elapsed time
[ 2.0 sec]

summary video elapsed time

Frame:1




Conclusions

> Proposed to model multiple scenes jointly

- Discover scene relatedness by matched topic pairs
- Discover shared activities across scenes

> Multi-scene Activity Profiling

> Cross—-scene Query

- Cross—-scene Classification

> Multi-scene Summarization




Thank You

.



