
1

MA-GANet: A Multi-Attention Generative
Adversarial Network for Defocus Blur Detection

Zeyu Jiang, Student Member, IEEE, Xun Xu, Senior Member, IEEE, Le Zhang, Chao Zhang, Member, IEEE,
Chuan Sheng Foo, and Ce Zhu∗, Fellow, IEEE

Abstract—Homogeneous regions and background clutters pose
challenges to defocus blur detection. Existing approaches often
produce spurious predictions in those regions and relatively
low confident predictions in boundary areas. We tackle above
issues from two perspectives in this work. Firstly, inspired by
the recent success of self-attention mechanism, we introduce
channel-wise and spatial-wise attention modules to attentively
aggregate features accordingly. Secondly, we propose a generative
adversarial training strategy to suppress spurious and low confi-
dence predictions. This is achieved by utilizing a discriminator to
identify predicted defocus map from ground-truth ones. In such a
way, the defocus network (generator) needs to produce ‘realistic’
defocus map to minimize discriminator loss. We further show
the generative adversarial training allows exploiting additional
unlabeled data to improve performance. Moreover, we demon-
strate that the existing evaluation metrics for defocus detection
often fail to quantify the robustness to thresholding. For more
practical comparisons, we introduce a novel �*�V evaluation
metric. Extensive experiments on three public datasets verify the
superiority of the proposed methods when compared against the
state-of-the-arts approaches.

Index Terms—defocus blur detection, generative adversarial
network, attention module

I. INTRODUCTION

OPTICAL imaging systems produce images with defocus
blur when objects are not at the focal region. Defocus

blur detection (DBD) aims to separate out-of-focus regions
from an image. It has wide applications, including quality
assessment [1]–[3], salient object detection [4]–[6], blur mag-
nification [7], image deblurring [8], [9], image refocusing [10],
etc.

Traditional defocus blur detection methods usually use the
low-level features such as gradient and frequency features [8],
[11] to extract the boundaries. Although much progress has
been achieved, these hand-crafted methods work well only in
limited scenes where the boundary is clear enough to separate
in-focus and out-of-focus (blurred) regions. Usually, they fail
when trying to separate smoothly blurred regions which do not
contain obvious boundary from the smooth in-focus regions,
which, are also called homogeneous areas.

To address these issues, deep Convolution Neural Networks
(DCNNs) have been applied to defocus blur detection tasks
recently. Zhao et al. [12] proposed the BTBNet to integrate the
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Fig. 1: Cluttered background (rectangular region) have a
nonnegligible impact on defocus blur detection. Our method
could effectively suppress the interference from background

semantic cues and structural information by designing a multi-
stream fully convolution network. Tang et al. [13] proposed a
network using recurrent fusion and refining modules to inte-
grate multi-level information. Despite the significant progress,
these networks do not explicitly consider the interdependencies
between features in a channel-wise manner. In addition, they
blindly fuse all the detailed features without considering their
individual contributions to defocus blur detection. Hence, the
results are sometimes interfered by the cluttered background,
as shown in Figure 1 (c) and (d) where some low-contrast
focal regions are misclassified.

Recent works on saliency detection and semantic segmen-
tation discovered that the high-level and low-level structural
information are usually complementary, where the former
captures the global context information and the latter captures
the spatial structural details [4], [15], [16]. Both the high-
level and low-level information are further integrated for better
feature expression by attention mechanism. In the context
of defocus detection, Tang et al. [17] employed a channel
attention module to select discriminative features by learning
the weights of each feature layers. Inspired by these designs,
we believe it is beneficial to exploit the separation of high-level
and low-level information and introduce attention mechanisms
to fuse features for defocus blur detection as well.

In order to improve the discriminative ability of network,
we first introduce a channel-wise attention module to explicitly
model interdependencies of feature channels by calculating
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the correlation of feature maps across channels. Such ability
is crucial for accurate detection of low-contrast focal regions
and suppressing the interference of background. As shown in
[13], [17], the detection maps from high-level features locate
an approximate area, while low-level features are good at de-
tecting the sparse and irregular boundaries of defocus regions.
Since low-level information alone is prone to the noisy clutters
from background and becomes less effective in homogeneous
areas, we further propose to use the high-level information to
guide the learning of low-level features by providing spatial
cues. To this end, we introduce a spatial attention module to
guide low-level features with a spatial attention map generated
from high-level features. After capturing the desirable high-
level information and low-level details, the features are fused
together to obtain complementary information and yield final
results. Due to the fusion of attentions at multiple levels,
the new backbone network is named Multi-Attention Network
(MANet). An illustration of MANet is presented in Figure 2.

Apart from the challenge in capturing both high-level and
low-level information, existing approaches often produce de-
focus blur detections with many artifacts which are often with
low-confidence, e.g., the blurry and sparse artifacts gener-
ated by BTBnet and DefuNet in Figure 1. These artifacts
caused visually ‘unrealistic’ defocus blur detection and this
phenomenon is well known as the blurry effect of averaging
pixel-wise loss [18], [19]. Because cross-entropy loss defined
over individual pixels is adopted, averaging the loss over
millions of pixels can be very insensitive to the sparse and
irregular wrongly predicted pixels, i.e., the artifacts. To tackle
this challenge, we take the approach of Generative Adversarial
Network (GAN) [19], [20] to learn a ‘high-level’ loss function
to enforce the prediction to be visually ‘realistic’. This is
achieved by utilizing a conditional GAN. The generator is
implemented by the aforementioned MANet and the dis-
criminator takes both RGB image and defocus prediction
map and differentiate the predicted ones from ground-truth
ones. Such a generative adversarial training procedure allows
discriminator to pick up the ‘high-level’ difference between
prediction and ground-truth, and enforce the generator to
produce more ‘realistic’ prediction. Finally, the discriminator
can be seamlessly integrated into the MANet and the we name
the whole system as Multi-Attention Generative Adversarial
Network (MA-GANet). An interesting observation of MA-
GANet is on its ability to fit the real data distribution [20]
which is demonstrated as the highly binarized distribution of
predicted maps compared against existing ones.

Obtaining labeled images is often expensive since it requires
providing pixel-wise annotation while unlabeled images with
out-of-focus regions are abundant with almost not cost. The
availability of a discriminator network allows us to exploit
additional unlabeled data to further improve the quality of
generator network. Therefore, we further investigate combin-
ing additional unlabeled data during training, a.k.a. semi-
supervised learning. In specific, we use additional unlabeled
data to enforce the generator to produce more ‘realistic
looking’ defocus map by minimizing the discrminator loss.
We observe further improvement in all tasks with additional
unlabeled data.

Beyond the novel design of network structure and training
strategies, we observe that existing metrics, such as harmonic
mean between precision and recall (�V), Mean Absolute Error
(MAE), Intersect over Union (IoU) and Area under the ROC
(AUC), are commonly adopted for benchmarking defocus blur
detection methods [12], [13], [17], [21]. Among these, we
notice that both �V and IoU require a fixed threshold to
binarize the output prediction before calculating metrics. Many
works which reported high performance on these two metrics
often select the best threshold to maximize the performance.
However picking a good threshold without seeing the testing
data is non-trivial and it is quite common that there is only
a very narrow range of threshold which gives competitive
performance. The MAE metric does not require thresholding,
but is sensitive to class imbalance. AUC measures the area
under true positive rate (TPR) vs. false positive rate (FPR)
curve over all possible thresholds. Higher AUC indicates better
separation between positive and negative, but it still does not
reveal whether there is a large range of threshold values under
which the binarized output is accurate. Using one AUC value
at a specific threshold (e.g. 0.5) for evaluation may not be fair
or representative. To provide a more reasonable measurement
of performance, we propose a new evaluation metric based on
�V . We first uniformly sample threshold values from 0 to 1
with a step of 0.01, then the �V is calculated at each threshold.
This will produce a �V vs. threshold curve, examples are given
in Figure 7 (b)(e)(h), and the area under the curve, namely
�*�V , is adopted as a threshold agnostic evaluation metric.
A flatter �V curve and higher <�V generally indicate a method
being more robust to threshold values.

Overall, we summarize our contributions as below.
• A novel Multi-Attention Network (MANet) is proposed

to detect defocus regions from images. The end-to-end
deep network extracts the interdependencies of features to
accurately distinguish defocused blur from homogeneous
regions and suppress the interference of background clut-
ter. This has appeared in a preliminary version of this
work [22].

• In addition to the contributions made in the preliminary
work, we further claim the following contribution in
this work. To reduce the artifacts produced by state-of-
the-art defocus detection networks, we further propose
a generative adversarial training strategy to enforce the
output to be ‘realistic looking’.

• We further demonstrate that through generative adversar-
ial training, we achieve even higher performance with
additional unlabeled data, a.k.a. semi-supervised learning.

• We also propose a new evaluation metric, �*�V to
measure the robustness to threshold values. A higher
�*�V generally indicates the prediction output to be
robust to a wider range of threshold.

II. RELATED WORK

Defocus Blur Detection (DBD). Traditional handcrafted
based methods mostly focus on the differences of gradients
and frequency information of in focus and out-of-focus regions
and then extract the edge features because defocus blur usually
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blunts object edges. Pang et al. [23] developed a defocus
blur detection method based on kernel-specific feature which
consists of the information of a blur kernel and the information
of an image patch, and the blur regions are distinguished with
an SVM. Su et al. [24] found that the first few most signif-
icant eigen images of a defocused patch usually have higher
weights than in-focus patches. Thus they detected defocus
regions by calculating the singular-value of each image pixels.
Golestaneh and Karam [25] proposed the method which makes
use of the high-frequency DCT coefficients of the gradient
magnitudes from multiple resolutions to detect blur regions.
Yi and Eramian [14] presented a method which captures the
distribution of uniform local binary patterns in blur and non-
blur image regions for defocus blur detection. By exploiting
the gradient domain information of the corresponding local
patches, Xu et al. [26] introduced a ranking-based metric to
detect defocus blur regions and they generate the complete
blurred regions by a standard propagation method. In order
to enhance the discriminative ability for differentiating in-
focus and out-of-focus regions, Shi et al. [8] extract a set of
defocus blur features including gradient, Fourier domain, and
data driven local filter features. These traditional techniques
are capable of keeping fine image details. Nevertheless, the
hand-crafted features and priors can hardly capture high-level
and global semantic knowledge. Therefore, their results can
only work well for images with simple structures and are
unsatisfying when dealing with complex scenes. Therefore,
extracting high-level and enhance the discriminative ability of
network is necessary.

Deep CNNs have recently set new standard on a number of
visual recognition tasks, including defocus blur detection [12],
[13], [21], [27]–[32]. Motivated by such vast successes, Park
et al. [29] proposed a unified approach to combine handcrafted
and deep blur features at image patch-level and fed them
into an fully convolutional network for blurred degree predic-
tion. In [27], two subnetworks are designed to learn global
information and local features. Then the probabilities map
predicted by the two networks are aggregated and fed into
a Markov random field based framework to yield the final
prediction map. Based on the observation that defocus blur
is sensitive to the image scale, Zhao et al. [12] proposed a
multi-stream bottom-top-bottom fully convolutional network
to integrate semantic features and detailed information. In
order to extract more features, two streams i.e., a forward
stream and a backward stream, are used to integrate multi-
level features. However, their large number of parameters lead
to high storage and computation consumption. Besides, some
low-contrast focal areas still cannot be differentiated. Tang et
al. [13] proposed a defocus blur detection method based on
recurrently fusing and refining of the feature maps. The feature
fusion and refinement are performed step-by-step in a cross-
layer manner. Zhao et al. [33] introduced a cross-ensemble
network to enhance diversity of defocus blur detectors. In
[34], A bidirectional residual feature refining network with two
branches is constructed to refine the residual features in two
directions. The final predicted map is generated by fusing the
outputs from two branches. Lee et al. [35] collected a novel
dataset with synthetic defocus images for network training and

adopted domain adaptation method to address the gap between
synthetic images and real ones. Cun and Pun [21] proposed a
depth distillation to use depth information for DBD.

Despite the improvement these deep learning based defo-
cus blur detection methods have made, there are still some
issues which may make their prediction results unsatisfying.
First, most of previous deep learning based DBD methods
focus more on acquiring multi-level deep features by building
deeper or wider network, without considering the correlations
amongst feature maps. Second, existing methods integrate
all detailed features without distinction. Thus, their results
sometimes are interfered by the background clutter (as shown
in Figure 1) and some low-contrast focal region cannot be
differentiated.
Attention Mechanism. Attention module has proved its effec-
tiveness in various tasks such as image classification, saliency
object detection, video classification, etc. Wang et al. [36]
proposed the non-local network mainly exploring effectiveness
of non-local operation in spacetime dimension for videos and
images. Zhao et al. [4] proposed a pyramid feature attention
work for saliency detection. However, their attention modules
are less effective in modelling the relationship of feature maps,
which is crucial for enhancing the discriminative ability of
network. Fu et al. [15] designed two parallel self-attention
modules to capture long-range dependencies for semantic seg-
mentation task. In this work, different from existing attention
designs, we propose to explicitly model the channel-wise
correlation to aggregate features across different channels.
Given separated high-level and low-level features, we use the
spatial cues of high-level features to weight low-level features
beyond trivial fusion.
Structured losses. Defocus blur detection is often formulated
as per-pixel classification and each pixel of predicted image is
penalized independently from all others because of the adopted
per-pixel loss, e.g. cross entropy loss. Structured losses are
capable of penalizing the joint configuration of the output
to correct high-frequency information. Many methods have
considered structured losses, such as the SSIM metric [37],
conditional random fields [38], feature matching [39] and
losses based on matching co-variance statistics [40]. Recently,
some methods [19], [41] applied the Generative Adversarial
Networks (GANs) to learn a structured loss for visual data.
In [19], a conditional GAN is applied to learn a structured loss
to produce more realistic style transfer on images. A generator
learns a mapping from random noise and conditional input to
the output space and a discriminator learns to discriminate
predicted outputs from real ones. In this work, we introduce
generative adversarial training to defocus detection to further
penalize artifacts in prediction maps. We further demonstrate
such design enables using additional unlabeled data to further
improve the performance.

III. METHODOLOGY

In this section, we first introduce the multi-attention network
which learns high-level and low-level features in a two-stream
way and fuses both branches to produce defocus prediction.
Then we elaborate the generative adversarial training proce-
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Fig. 2: The framework of the proposed Multi-Attention Network (MANet).

dure which forces the multi-attention network (generator) to
produce more ‘realistic’ predictions.

A. Multi-Attention Network

Accurate detection of low-contrast focal regions and effec-
tive suppression of background clutter are main challenges of
defocus blur detection. Therefore, it is important to enhance
the discriminative ability of network. Most fully convolutional
network (FCNs) based defocus blur detection methods do not
make full use of the correlations of feature layers, result-
ing in relatively-low performance in defocus blur detection.
Moreover, using low-level features alone could be prone to
background clutters and misclassify homogeneous areas. To
resolve these issues, we develop an efficient defocus blur
detection network taking into consideration the correlation
between feature channels and use the spatial attention of high-
level features to guide low-level feature learning.
As illustrated in Figure 2 , the pre-trained model VGG-16 [42]
is employed as the backbone feature extraction network
which produces five basic feature extraction layers denoted by
conv1_2, conv2_2, conv3_3, conv4_3 and conv5_3. To trans-
form the original VGG-16 model into a fully convolutional
network, we remove the top three fully connected layers of
VGG-16. We also delete the five pooling layers to utilize
spatial information effectively. The feature extracted by the
shallow layers can reflect the fine details which preserve the
sharp edges of in-focus objects, while the deep layers could
capture high-level spatial extent, which can help avoid in-focus
smooth regions being misclassified. Thus we intuitively divide
the layers into two groups. Specifically, conv3_3, conv4_3
and conv5_3 are deeper layers. We up-sample the conv4_3
and conv5_3 to the size of conv3_3, then combine all by a
cross channel concatenation as the basic high-level features.
Meanwhile, shallow layers, conv1_2, conv2_2, are used to
exploit detailed information. The similar up-sample operations

are carried out to obtain the basic low-level features. Then,
both low-level features and high-level features are fed into
the channel-wise attention module separately to extract the
interdependencies of different feature maps. Afterwards, we
use the spatial attention computed from high-level features
to guide the learning of low-level features. This step is
necessary because high-level features mainly characterize the
spatial extent while the low-level features focus on detailed
boundaries but are prone to background clutters [43], [44].
The output from both high-level and low-level features are
fused together to obtain pixel-level predictions.

1) Channel Attention Module: We employ a channel-wise
attention mechanism to emphasize the important features
and suppress disturbing information by explicitly modeling
channel-wise interdependencies. The module computes re-
sponses based on relationships between different channels and
improves the representation capability of defocus features.

As illustrated in Figure 3, given a feature X∗ ∈ R�×�×,
we firstly reshape it to X ∈ R�×# , then perform a matrix
multiplication between X and its transpose X) . Afterwards,
the attention map R ∈ R�×� is obtained by applying a softmax
function,

A8 9 =
4G?(x8 · x 9 )∑�

8=1 (4G?(x8 · x 9 ))
(1)

where A8 9 measures the 8Cℎ channel’s influence factor on the 9 Cℎ

channel. The more similar two feature maps are, the stronger
the correlation will be. Then we apply a matrix multiplication
between the transpose of R and X to get the output in shape
R�×�×, . Finally, we multiply a scale factor to the output and
add a residual connection to produce the final output Y.

Y 9 = U

�∑
8=1
(A 98X8) + X 9 (2)

The scale factor U is initialized to zero which means the
module have no influence on the input feature maps at the
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beginning and gradually learns a proper weight during the
training process. It can be inferred from Eq. (2) that the
resultant feature map Y is a weighted sum of all channels and
the original map. Therefore, it models the interdependencies
across feature channels. The similar feature maps achieve
mutual gains, thus emphasizing desired features, gaining better
representation of defocus features and enhancing the discrimi-
native ability. In order to make full use of feature correlations,
channel-wise attention module is employed to both high-level
and low-level features.
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Fig. 3: The details of channel attention module."⊕" and "⊗"
denote matrix multiplication and element-wise summation,
respectively.

2) Spatial attention module: The low-level cues are es-
sential to defocus blur detection to help refine the sparse
and irregular detection regions. By utilizing deep CNNs,
we could extract fine detailed information. However, most
existing defocus blur detection methods integrate all features
without distinction, which leads to information redundancy.
More importantly, some detailed information would lead to
a performance degradation. For instance, some out-of-focus
regions with strong detailed information may be mistakenly
regarded as in-focus regions as in Figure 1. To address this
issue, we propose a spatial attention module to adaptively em-
phasize desired low-level features. As illustrated in Figure 2,
the outputs of low-level channel-wise attention module will
be fed into a spatial attention module which utilizes the high-
level spatial cues to adaptively emphasize low-level details.
Specifically, Xℎ ∈ R�×�×, stands for high-level features
and X; ∈ R�×�×, stands for low-level features. In order to
increase receptive field without additional computation cost,
two consecutive atrous convolutions are applied to extract
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Fig. 4: The details of spatial attention module. "⊗" denotes
element-wise product

spatial information (see Figure 4). After mapping the extracted
features to [0,1] by a sigmoid function, we obtain the final
attention weight map Z. The final output of the low-level
features X̃; is acquired by weighting low-level feature X; with
spatial attention weight map Z as,

X̃; = X; ◦ Z (3)

where ◦ indicates element-wise product. Since the high-level
features capture the spatial extent well, such re-weighting
could help suppress the erroneous prediction in background
clutter.

3) Loss Function: Cross entropy loss is widely adopted
by existing methods [33], [34] for training defocus detection
network. However, as seen from Figure 5, the two classes (in-
focus and out-of-focus regions) are often highly imbalanced
with out-of-focus region being the majority. Cross entropy loss
is calculated over each individual pixel and the averaged loss is
used for training, as a result it is very sensitive to the imbalance
and will bias the network towards predicting out-of-focus.

To tackle this issue, we introduce the intersection-over-
union (IoU) loss. IoU is a commonly used evaluation cri-
terion for the segmentation problem. Given an image and
its corresponding label, IoUs give the similarity between the
predicted region and ground truth region and calculate the area
of intersection divided by the union area of the two regions.
The IoU measure can effectively take into consideration the
imbalance problem. For example, if a trivial solution predicts
every pixel to be out-of-focus region, the intersection between
the predicted region and ground-truth and IoU metric would
both be zero. Therefore, it potentially improves the defocus
detection by penalizing small IoU metric. Luckily, this objec-
tive can be easily converted into the IoU loss,

L� >* = 1 − | 5 (X) ◦ Y|
| 5 (X) | + |Y| − | 5 (X) ◦ Y| (4)
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Fig. 5: Distributions of in-focus and out-of-focus pixels in
different datasets.
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Fig. 6: Framework of the proposed Multi-Attention Generative
Adversarial Network (MA-GANet). "⊕" denotes concatenation
operation across channels.

where 5 (X) is the probabilistic output of MANet and | · | is
the L1 norm.

Despite being robust to class imbalance, IoU may result
in diminishing gradient when there is no overlap between
prediction and ground-truth, i.e. | 5 (X) ◦Y|. To overcome this
challenge, we also employ cross entropy loss to complement
IoU loss. The pixel-wise cross entropy Loss between predic-
tion 5 (X) and the ground truth mask Y is calculated as:

L�� = |Y ◦ log 5 (X) + (1 − Y) ◦ log(1 − 5 (X)) | (5)

The combined loss function to optimize is shown in Eq. (6)

_��L�� + _� >*L� >* (6)

Where _�� and _� >* represents the weight of cross entropy
loss and IoU loss respectively.

B. Discriminative Network

Defocus blur detection is formulated as a per-pixel clas-
sification problem as above. The known issues with such
pixel-wise loss result in artifacts in output prediction. Thus,
we propose to adopt a conditional Generative Adversarial
Network (cGAN). The discriminator learns to differentiate
predicted defocus map from ground-truth ones, serving as a
‘structural loss’ to penalize out-of-distribution predictions. It
allows prediction network, also known as the generator, to
produce more ‘realistic’ looking defocus outputs.

1) Conditional Generative Adversarial Networks: A Gener-
ative Adversarial Network (GAN) [20] consists of two adver-
sarial networks: a generator G, and a discriminator D which are
trained in a min-max game manner. The generator G is trained
to map an input, e.g., a random noise vector, to an output
space which is similar to the data distribution. Meanwhile,
the discriminator is optimized to distinguish synthesized data
from the true data distribution. The conditional variant of
GAN (cGAN) [19] further takes a data sample as input, in
contrast to a random noise vector, so that the generator could
be realized as arbitrary network transforming data sample in
one domain into another domain. More formally, we define
the generator as a mapping from input RGB image to defocus
map, � : {X → Y}. Such a generator can be instantiated as
the MANet introduced in previous sections. A discriminator is
also defined as a mapping from a pair of RGB image and the
associated defocus map, � : {{X,Y → A}} where A ∈ [0, 1]
is a probabilistic prediction. The loss function cGAN is thus
written as,

L2��# =EX,Y [log� (X,Y)] +
EX [log(1 − � (X, � (X)))]

(7)

We follow the practice in [19] to omit the noise vector from the
generator as a diverse output can be achieved by the dropout
layers in the MANet.

As we discussed above, by optimizing the min-max objec-
tive, the discriminator is able to help the generator produce
predictions which are closer to the true data distribution. The
defocus detection network, known as MANet, takes RGB
image as input and yields prediction maps as output. It is
natural to take the MANet as the generator to realize the
mapping from input image to defocus prediction.

To construct the discriminator, we are aware that the low-
frequency components are already constrained by the pixel-
wise loss, e.g., the cross entropy loss and IoU loss. Impor-
tantly, the high-frequency components, which are accountable
for the commonly observed artifacts, are not easily captured by
the existing loss functions. Thus, the discriminator only needs
to focus on the correctness in high-frequency components. Due
to many spatially repetitive patterns in the image, we adopt
PatchGAN [19] as the discriminator. It consists of  fully
convolution layers, each pixel of the " × " output feature
map is classified into ‘real’ or ‘fake’. Each pixel of feature
map determines if the corresponding rectangle patch in the
input domain looks ‘real’ or not, thus termed as PatchGAN
by [19].

It has been widely observed that training GAN is prone
to instability, when the target distribution differs too much
from model distribution, the learning gradient for generator
may vanish or explode [45]. To tackle this issue, the Spectral
Normalization technique was introduced to stabilize the train-
ing of GAN so that the learning gradient is well normalized
[46]. In specific, for each convolution kernel W in PatchGAN
discriminator, we apply the following normalization,

Ŵ =
W

f(W) , f(W) = max
h:h≠0

| |Wh| |2
| |h| |2

(8)

where f(W) is the largest singular value of W.
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We integrate the MANet, as generator, and the discrimi-
native network into a unified framework, termed as Multi-
Attention Generative Adversarial Network (MA-GANet) with
illustration in Figure 6. The final training loss function
combines both regular defocus training loss, i.e., pixel-wise
cross-entropy loss L�� , IoU loss L� >* , and the generative
adversarial training loss L2��# . The training objective writes
as in Eq. (9).

min
�
{_��L�� + _� >*L� >* + _2��# max

�
L2��# (�, �)}

(9)

C. Semi-Supervised Learning

Training defocus detection is subject to the high cost of
acquiring labeled data. Annotating defocus map is particularly
challenging as labels for every pixel must be provided. We
investigate in this section using additional unlabeled data to
further improve the performance. Given a new batch of data
with half being labeled {X;

8
,Y;

8
} and others being unlabeled

{XD
9
}, we take the following steps to update discriminator

and generator. For discriminator, we still update with labeled
data only by minimizing the cGAN loss in Eq. (7). For
updating discriminator, we take a two-step approach. In the
first step, we compute the combined loss L∗

;
= _��L�� +

_� >*L� >* + _2��#L2��# (�, �̂) with labeled data where
�̂ is the fixed discriminator network. In the second step,
we compute discrminator loss L∗D = _2��#L2��# (�, �̂)
with unlabeled data only. Then we accumulate the gradient
computed from these two steps 0.5 ∗ ∇Θ�L∗; + 0.5 ∗ ∇Θ�L∗D
as the final gradient for updating generator where Θ� and Θ�
are parameters for generator and discriminator respectively.

D. Training and Inference Details

In this section, we elaborate the details of training MA-
GANet. We initialize backbone’s parameters from a VGG-16
network pretrained on the ImageNet and initialize discrimina-
tor’s parameters randomly from a Gaussian distribution with
mean 0 and standard deviation 0.02. Since it involves solving
a min-max game, we follow a two-step iterative optimization
procedure. In the first step we sample a mini-batch {X8 ,Y8}
and do forward pass on MANet (generator) with output 5 (X).
Then we concatenate input image and ground-truth/prediction
as {(X8 ,Y8)8} and {(X8 , 5 (X8))8}, respectively. The discrim-
inator is updated by the calculated adversarial loss. In the
second step, we recalculate the adversarial loss with fixed dis-
criminator, and the total loss is minimized by one step gradient
descent. The overall training algorithm is presented in Algo. 1.
During the inference stage, only the generator is employed to
map input RGB image to defocus prediction. When additional
unlabeled data is available, we first implement a fixed steps
of warm-up, i,e, training the model in a supervised manner.
Afterwards, we turn on semi-supervised training following
Sect. III-C.

Algorithm 1: Training MA-GANet
Input: Training Images X, labels Y
Output: Network parameters Θ = {Θ� ,Θ�}
Initialize the network.
for number of training iterations do

# Train discriminator � (X,Y;Θ�)
Calculate !2��# by Eq. (7)
Update discriminator by maximizing !2��#
# Train generator � (X,Y;Θ�)
Freeze the parameters of discriminator Θ�
Calculate L�� , L� >* and recalculate L2��#
Update the MANet by minimizing Eq.(9)
Unfreeze the parameters of discriminator Θ�

IV. EXPERIMENT

A. Datasets

In our experiments, we demonstrate on three publicly avail-
able datasets with pixel-level annotations. Shi et al.’s dataset
(Shi’s Dataset) [47] consists of 704 partially defocus blurred
images. We divided 704 defocus blur images with pixel-level
masks into two parts, i.e., the first 604 images for training
and the rest 100 images for testing as [13]. DUT [12] is a
defocus blur detection dataset proposed by Zhao et al. which
consists of 600 training images and 500 test images with pixel-
level annotations. It is a more challenging dataset because
images have multi-scale focused areas, i.e. low contrast focal
regions and strong background clutter. CTCUG [17] is a
newly collected test dataset which contains 150 images with
manual pixel-wise annotations. All 150 images are used for
testing only in this work and training is carried out with
DUT dataset. Several challenging cases are considered in the
CTCUG, such as complex background, in-focus areas with
low contrast, in-focus and out-of-focus foreground, and same
class of objects with different defocus condition. For semi-
supervised learning, we use additional unlabeled data from
FRD dataset [48] which was originally proposed for weakly
supervised defocus detection with 5000 images each annotated
with a box indicating the rough area of in-focus region. We
only use these images as unlabeled data for training.

B. Evaluation Metric

We first consider several widely adopted single numeric
evaluation metrics, including �V , Mean Absolute Error
(MAE), Intersect over Union (IoU) and ROC area under
the curve (AUC). �V measures the harmonic mean between
precision and recall. MAE measures the absolute difference
between prediction and ground-truth with both normalized to
between 0 and 1. IoU measures the overlap between binarized
prediction and ground-truth. AUC measures defocus detection
as binary classification problem. All except MAE are higher
the better.

To further provide insight into the behavior of all competing
methods, we evaluate precision-recall curve, �V curve and
ROC curve. The �V curve plots the �V vs. threshold where
�V is the harmonic mean of precision and recall with defocus
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prediction map binarized at each threshold. A good performing
method should not only achieve higher point in this curve also
maintain high �V over all thresholds. Therefore, based on the
�V curve, we further propose a new numeric evaluation metric
�*�V which is the area under the �V curve. It simultaneously
measures the accuracy and robustness of a method.

C. Implementation Details

We uses the VGG-16 [42] as backbone network for fea-
ture extraction. All existing datasets have limited number of
training samples which hampers generalization trained deep
neural network. In order to improve generalization and reduce
overfitting, we apply data augmentation to each origin image
by sequentially random horizontal flipping, random rotation
between −0.15c and 0.15c, resizing and cropping. Specif-
ically, resizing refers to rescaling the image to 384 × 384
pixels and cropping further crops a 320 × 320 patch from
resized image. The whole network is optimized by Adam
optimizer [49] and The learning rate is initialized to 44−4. The
momentum is 0.9 and the weight decay is 54−4. The training
batch size is 8. We train 1,000 epochs on the all datasets. For
semi-supervised learning, we warm-up for 200 epochs with the
same setting as above. Afterwards, we following the setting
described in Sect. III-C with 4 labeled samples and 4 unlabeled
samples in a minibatch.

D. Comparison with the state-of-the-art methods

1) Competing Methods: We compare our method with other
11 state-of-the-art approaches, including analyzing spatially-
varying blur (ASVB) [50], discriminative blur detection fea-
tures (DBDF) [8], spectral and spatial approach (SS) [51],
local binary patterns (LBP) [14], high-frequency multiscale
fusion and sort transform (HiFST) [25], bottom-top-bottom
network (BTBNet) [12], defocus map estimation using domain
adaptation (DMENet) [35], depth Distillation (DD) [21], re-
currently fusing and refining multi-scale deep features (Defu-
Net) [13] and its extended version [17] denoted as DefuNetV2.
For a fair comparison, all the deep-learning based methods
take pretrained VGGNet [42] as backbone network.

For our own methods, we refer MANet to the vanilla model
without generative adversarial training proposed in Sect. III-A.
We further evaluate MA-GANet which incorporates generative
adversarial training. Finally, we evaluate MA-GANet with
semi-supervised training (MA-GANet-s).

2) Quantitative Comparison: We first provide numerical
comparisons against state-of-the-art methods in Table I. All
five metrics are reported on three datasets. Due to incon-
sistent data splits are adopted by BTBNet, CENet and DD
for Shi’s dataset, we defer the comparison to these three
methods to Table III. From both tables, we make the following
observations. First, IoU and �*�V are more indicative than
the other three metrics. For example, on Shi’s dataset, the
absolute gaps between MA-GANet (best) and ASVB (worst)
are 0.222 for �V , 0.628 for MAE, 0.882 for IoU, 0.360 for
AUC and 0.754 for �*�V , respectively. Given all metrics
normalized to between 0 and 1, more significant gaps are
observed for IoU and �*�V . This suggests future comparisons

should focus more on these two metrics. In addition, we make
clear observation that our MANet already achieves higher
performance than DefuNetV2 on most metrics. This is at-
tributed to the advantage of spatial attention module. The MA-
GANet with generative adversarial training achieves the state-
of-the-art performance under standard fully supervised training
settings on all three datasets, demonstrating the effectiveness
of discriminator network. Finally, with additional unlabeled
MA-GANet-s further improves performance suggesting the
effectiveness of exploiting unlabeled data.

We also observe that the CTCUG dataset is the most
challenging one with all methods achieving performance
consistently lower than DUT and Shi’s datasets, suggesting
future works should pay more attention to transfer learning
benchmarking on this dataset. Finally, under Zhao’s split [12],
[33] in Table III, our MANet and MA-GANet still outperform
BTBNet, CENet and DD with a large margin, which is
consistent with observations made from alternative data split
adopted in Table I.

We further present the three types of curves, precision
and recall (PR) curve, �V curve and receiver operating curve
(ROC), to compare all methods in Figure 7. First, we observe
a clear margin between MANet (pink) and other state-of-
the-art methods. This is supported by the high profile of all
three curves for MANet. Combined with generative adversarial
training, the final MA-GANet clearly beats all existing models.
Moreover, the �V curve further reveals the robustness to the
choice of threshold. Though some methods report very high
�V measure, it is observed from the figure that these methods
are highly sensitive to the choice of threshold. In contrast,
our proposed MA-GANet yields robust defocus prediction
performance within a large range of threshold.
Running Efficiency In addition to improved results, our
method is also efficient in inference. We run inference on a
workstation with an Intel 3.4GHz CPU with 32 GB memory
and a single Nvidia GTX Titan Xp. The average inference
time for an image of different methods are shown in Table II.
The non-deep learning approaches run inference on CPU and
significantly slower than deep learning approaches running on
GPU. MA-GANet is fast on all three datasets, achieving 15-20
fps in average.

3) Qualitative Comparisons: We present qualitative exam-
ples of defocus prediction for all competing methods in Fig-
ure 8. We first observe that all non-deep learning approaches
produce noisy (e.g. LBP)and ambiguous (e.g. SS) predictions.
These observations suggest the hand-crafted methods are
prone to unclear boundaries and homogeneous areas and thus
fail to produce clear defocus detection. We further observe
that the deep learning based methods (e.g. CENet, DefuNet,
DefuNetV2 and our proposed methods) produce significantly
better defocus detection than the non-deep counterparts. Nev-
ertheless, due to the absence of considering interdependencies
between spatial and feature channels, the existing approaches
often fail on images with cluttered background and low-
contrast areas.

In specific, the state-of-the-art DefuNetV2 failed to separate
the near focus person. For images with cluttered background,
image 2, 4 and 8, DefuNetV2 misclassified in-focus and
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out-of-focus regions. In contrast, with the ability to capture
feature interdependencies and fusion of low-level and high-
level features, our MANet produces much clearer defocus pre-
dictions. More interestingly, by introducing the discriminator,
the final MA-GANet further removes many artifacts produced
by MANet and produces more cleaner and binarized defocus
outputs. With additional unlabeled data, the semi-supervised
approach (MA-GANet-s) produces results most similar to the
ground-truth (GT).

E. Ablation Study

In this section, we evaluate the effectiveness of the two
components proposed with both quantitative and qualitative
ablation studies.

1) Effectiveness of Attention Modules: We extensively
analyze the impact of attention modules. Specifically, we
first decompose the attention modules into high-level feature
branch (HL) where only conv3_3, conv4_3 and conv5_3 are
used; low-level feature branch (LL) where conv1_2, conv2_2
are used; high-level channel-wise attention module (HCA)
where the channel-wise attention module is applied to high-
level branch; low-level feature channel-wise attention module
(LCA); and spatial attention module (SA) where spatial at-
tention module is applied. We choose the VGG model with
HL alone as the baseline model. Then, we gradually add low-
level feature branch (LL), high-level channel attention module
(HCA), low-level channel attention module (LCA) and spatial
attention module (SA) to augment the baseline model. The
combination of IoU loss and CE loss is adopted for all ablative
models. We carried out experiments with all ablative models
on DUT dataset since it is the most representative dataset
for defocus detection. All five metrics are evaluated for each
ablative model with results reported in Table IV. We observe
from these results that, first, all components are contributing
positively with consistent improvements in all metrics. In
particular, fusing HL with LL is important with more than
0.03 improvement in MAE from baseline. We also notice
it is important to apply spatial attention to guide the low-
level feature learning from high-level branch, the final model
observes 0.01 improvement in MAE from with SA module and
either with HCA or LCA alone SA does improve consistently.
The above observations suggest the importance of fusing low-
level and high-level features via spatial attention module.

2) Advantage of Generative Adversarial Network: We in-
troduce the discriminative network to learn a proper structured
loss to encourage ‘realistic’ defocus predictions. Here we
investigate the impact of adversarial loss. Specifically, we
compare MANet and MA-GANet with results reported on
DUT dataset in Table IV. It can be observed that after adding
the adversarial loss to the original MANet, the performance
of the network has been further improved on 4 out of the
5 evaluation metrics. More specifically, large improvements
are logged for MAE, over 10% relatively, and �*�V both
of which are more indicative than others. These observations
suggest the efficacy of proposed generative adversarial training
mechanism.

3) Semi-Supervised Learning: : We investigate the effec-
tiveness of exploit additional unlabeled data to further improve
the defocus detection performance. We compare the perfor-
mance on DUT dataset with additional unlabeled data (MA-
GANet+SSL) in Table IV. We observe all five metrics are
further improved with these additional unlabeled data.

4) Qualitative Ablation Study: To visually further demon-
strate the impact of attention modules and generative
adversarial training we compare baseline model (Base-
line), HL+LL+SA (Baseline+SA), HL+LL+HCA+LCA (Base-
line+CA), MANet, MA-GANet and MA-GANet+SSL (MA-
GANet-s). Qualitative results are shown in Figure 9.
Spatial Attention Effectiveness We first investigate the ef-
fect of spatial attention module by comparing the defocus
predictions by Baseline and MANet columns. The networks
without spatial attention are unable to adaptively select correct
spatial extent, hence, its detection results are influenced by
background clutters. For example, the prediction in the second
row by Baseline is interfered by the background and have
unclear boundaries around the rose, whereas the Baseline+SA
is capable of producing sharper and better results. Besides, the
smooth out-of-focus areas on macarons (third row) are mis-
takenly predicted as in-focus region without spatial attention
module (Baseline and Baseline+CA) while the MANet (with
spatial attention) could effectively distinguish the out-of-focus
regions.
Channel Attention Effectiveness We compare Baseline+SA
against MANet to highlight the importance of channel atten-
tion module. Apparently, compared with outputs from MANet,
some low contrast in-focus regions by Baseline+SA are mis-
classified and the cluttered background interferes the detection
result. This is because the network without channel attention
is unable to extract the inter-dependencies of features thus
hindering the discriminative ability. To be specific, in the first
row, almost all of the clear regions are wrongly taken as
blurred ones by Baseline+CA. Even with the help of spatial
attention module, there is still half of the in-focus pixels being
mispredicted because the network cannot effectively extract
the high-level information.
Generative Adversarial Training Finally, we investigate the
effect of introducing generative adversarial training. It can be
seen that with the help of generative adversarial networks,
MA-GANet yields better detection results with sharper bound-
aries and finer details. More specifically, some smooth in-
focus regions, i.e., part of the arm in the fourth row, are
misclassified by MANet, while MA-GANet could give an
accurate prediction and preserve the boundary information of
the in-focus objects well.

V. ADDITIONAL STUDY

In this section, we investigate the impact of hyperparameters
that could affect the performance of the proposed network.

A. Loss Weight

In Sec.III, we proposed multiple loss functions including
cross entropy loss, IoU loss and adversarial loss. We study
the importance of each loss by adjusting the weights, _�� ,
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TABLE I: Quantative comparison of F-measure, MAE, IoU, AUC, and mean �V (�*�V) scores. The best two results are
shown in red and blue colors, respectively.

Datasets Metric ASVB DBDF SS LBP HiFST BTBNet CENet DefuNet DMENet DD DefuNetV2 MANet MA-GANet MA-GANet-s

Shi’s

�V↑ 0.731 0.841 0.787 0.866 0.865 — — 0.917 0.914 — 0.925 0.951 0.953 0.955
MAE↓ 0.636 0.323 0.298 0.186 0.232 — — 0.116 0.155 — 0.102 0.096 0.084 0.080
IoU↑ 0.04 0.547 0.742 0.757 0.732 — — 0.833 0.826 — 0.845 0.869 0.886 0.882

AUC↑ 0.592 0.839 0.829 0.873 0.829 — — 0.922 0.880 — 0.924 0.951 0.952 0.953
�*�V↑ 0.192 0.761 0.800 0.834 0.828 — — 0.920 0.702 — 0.930 0.938 0.946 0.948

DUT

�V↑ 0.747 0.802 0.784 0.874 0.866 0.887 0.903 0.922 0.930 0.932 0.952 0.950 0.954 0.958
MAE↓ 0.651 0.369 0.296 0.173 0.302 0.190 0.135 0.115 0.314 0.113 0.082 0.078 0.070 0.068
IoU↑ 0.052 0.529 0.529 0.782 0.635 0.803 0.839 0.857 0.846 0.857 0.887 0.899 0.907 0.908

AUC↑ 0.582 0.779 0.779 0.859 0.866 0.856 0.898 0.889 0.846 0.901 0.952 0.969 0.967 0.974
�*�V↑ 0.219 0.730 0.730 0.840 0.792 0.844 0.881 0.894 0.753 0.898 0.952 0.934 0.952 0.954

CTCUG

�V↑ 0.605 0.740 0.741 0.805 0.785 0.827 — 0.891 0.845 0.905 0.899 0.899 0.910 0.926
MAE↓ 0.505 0.344 0.302 0.242 0.267 0.177 — 0.138 0.301 0.122 0.127 0.119 0.105 0.092
IoU↑ 0.066 0.466 0.670 0.650 0.606 0.731 — 0.758 0.754 0.774 0.761 0.788 0.802 0.809

AUC↑ 0.649 0.770 0.827 0.821 0.839 0.910 — 0.897 0.899 0.926 0.930 0.938 0.942 0.957
�*�V↑ 0.266 0.637 0.731 0.681 0.754 0.832 — 0.865 0.693 0.869 0.866 0.892 0.900 0.912

TABLE II: Average running time(s) for an image of different methods on different datasets

Methods ASVB DBDF SS LBP HiFST BTBNet CENet DefuNet DefuNetV2 MA-GANet
CPU/GPU CPU CPU CPU CPU CPU GPU GPU GPU GPU GPU

Datasets
Shi’s 2.04 214.83 2.76 57.34 2576.24 25 0.064 0.094 0.097 0.062
DUT 1.59 110.37 1.20 30.38 1169.57 25 0.064 0.056 0.059 0.050
CTCUG 1.65 120.24 2.01 34.55 1204.71 — — — 0.068 0.060

TABLE III: Comparison on the datasplit proposed by [12] for
Shi’s dataset

Methods MAE ↓ �V↑ IoU ↑ AUC↑ �*�V↑
BTBNet 0.109 0.950 0.909 0.980 0.913
CENet 0.060 0.956 0.921 0.951 0.944
DD 0.048 0.966 0.936 0.972 0.960
MANet 0.054 0.960 0.926 0.986 0.949
MA-GANet 0.043 0.969 0.940 0.983 0.968
MA-GANet-s 0.040 0.970 0.941 0.986 0.968

TABLE IV: Ablation analysis of the different components
combinations.

Methods MAE �V IoU AUC �*�V

Baseline 0.132 0.924 0.865 0.947 0.914
HL+LL 0.101 0.937 0.886 0.951 0.932
HL+LL+HCA 0.092 0.938 0.878 0.955 0.926
HL+LL+HCA+SA 0.088 0.944 0.888 0.962 0.932
HL+LL+HCA+LCA 0.089 0.938 0.883 0.965 0.928
HL+LL+SA 0.087 0.940 0.882 0.963 0.929
MANet 0.078 0.950 0.899 0.969 0.934
MANet+adv (MA-GANet) 0.070 0.954 0.907 0.967 0.952
MA-GANet+SSL (MA-GANet-s) 0.068 0.958 0.908 0.974 0.954

_� >* and _2��# for each loss, respectively. The results are
shown in Table V. We observe a combination of cross entropy
loss and IoU loss consistently improves the performance, due
to the ability to handle imbalanced samples. Moreover, by
introducing a discriminator moderately (0.001), we achieve the
best performance, particularly on MAE and �*�V metrics.

TABLE V: The impact of different loss function.

_�� _�>* _2��# MAE↓ �V↑ IoU↑ AUC↑ �*�V↑
1.0 0 0 0.078 0.950 0.899 0.969 0.934
1.0 1.0 0 0.076 0.950 0.902 0.960 0.938
1.0 1.0 0.001 0.070 0.954 0.907 0.967 0.952
1.0 1.0 0.01 0.077 0.951 0.901 0.969 0.949
1.0 1.0 0.1 0.088 0.948 0.879 0.959 0.927
1.0 0 0.001 0.072 0.953 0.905 0.967 0.947
1.0 5.0 0.001 0.075 0.951 0.909 0.966 0.947

B. Discriminator Receptive Field

We evaluate the impact of varying the patch size N of our
discriminator receptive fields by adjusting the depth of GAN
discriminator and Table VI quantifies the effects using several
evaluation criterion. Note that elsewhere in this paper, unless
specified, all experiments use 70×70 PatchGANs, and for this
section all experiments use an CE+IoU+cGAN loss. Applying
a 70×70 PatchGAN is capable of producing promising results
and yielding better performance. Scaling beyond this to the
full 256 × 256 PatchGAN produces inferior results. This may
be explained as that 256 × 256 PatchGAN has much more
parameters than the 70×70 PatchGAN redenring training more
difficult.

C. Distribution Modelling

It is known that GAN fits the true data distribution [20]. In
this section, we demonstrate through comparing the frequency
of pixel-wise defocus prediction between MANet and MA-
GANet in Figure 10. The x-axis is the probabilistic defocus
prediction and y-axis is the average number of pixels per
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Fig. 7: Comparison of the PR curves, �V curves and ROC curves of the different methods on datasets.

TABLE VI: The impact of different discriminator receptive
field

Receptive field MAE �V IoU AUC �*�V

1 × 1 0.084 0.948 0.878 0.957 0.939
16 × 16 0.073 0.954 0.901 0.964 0.950
70 × 70 0.070 0.954 0.907 0.967 0.952
256 × 256 0.088 0.941 0.868 0.961 0.937

image. It is clear that MA-GANet generates more binarized
defocus prediction than MANet, suggesting incorporating gen-
erative adversarial training helps fit the ground-truth data
distribution.

VI. CONCLUSION

We propose a novel method named Multi-Attention Net-
work (MANet) for accurate and efficient defocus blur detec-
tion. Specifically, a channel-wise attention module is employed
to both low-level features and high-level features for better

feature representation. A spatial module is applied to the
low-level features, so as to focus more on desired details
and suppress the background clutter. In addition, we com-
bine MANet, as generator, with a PatchGAN discriminator
into a Multi-Attention Generative Adversarial Network (MA-
GANet) which produces high fidelity defocus prediction. Fi-
nally, we exploit additional unlabeled with MA-GANet to
further improve the defocus detection quality. Extensive exper-
imental results demonstrate our method outperforms the state-
of-the-art methods in terms of both existing evaluation metrics
and our newly proposed metric, �*�V , which evaluates the
robustness to thresholding.
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