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Abstract. The ability to identify the static background in videos cap-
tured by a moving camera is an important pre-requisite for many video
applications (e.g. video stabilization, stitching, and segmentation). Exist-
ing methods usually face difficulties when the foreground objects occupy
a larger area than the background in the image. Many methods also
cannot scale up to handle densely sampled feature trajectories. In this
paper, we propose an efficient local-to-global method to identify back-
ground, based on the assumption that as long as there is sufficient camera
motion, the cumulative background features will have the largest amount
of trajectories. Our motion model at the two-frame level is based on the
epipolar geometry so that there will be no over-segmentation problem,
another issue that plagues the 2D motion segmentation approach. Fore-
ground objects erroneously labelled due to intermittent motions are also
taken care of by checking their global consistency with the final esti-
mated background motion. Lastly, by virtue of its efficiency, our method
can deal with densely sampled trajectories. It outperforms several state-
of-the-art motion segmentation methods on public datasets, both quan-
titatively and qualitatively.

1 Introduction

Identifying background features from an image sequence is an important vision
task, subserving many other applications such as video stabilization, 3D scene
reconstruction, background color model estimation for video segmentation, etc..
When the camera is stationary, this task is considerably simplified. In this pa-
per, we focus on the difficult scenarios when the camera is moving and that the
foreground might occupy an image area larger than the background. Our objec-
tive is to identify those static parts of the background (hence forth to be called
just background, unless otherwise specified) even though they may only occupy
a small part of the scene in some frames.
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RANSAC is the prevailing method for finding background features across
two frames, when the assumption that the vast majority of the feature matches
belong to that of the background is true. For videos with large moving fore-
ground, it is evident that this simple strategy will fail [14, 13]. A recent method
[3] utilizes segmentation from the previous frames to help resolve difficulties
experienced in subsequent parts of the video. This propagation strategy may
relieve but not remove the aforementioned problems entirely. For instance, it
depends on the quality of the previous segmentation: foreground motions that
are intermittent, i.e., stationary at irregular intervals, may be accidentally la-
belled as background, and this wrong label is in turn erroneously propagated to
later frames. Trajectory-based motion segmentation methods consider the entire
trajectories across all the frames, and generally do not suffer from this kind of
error propagation. Among this class of approaches, the 3D motion segmenta-
tion methods [15, 12, 28] are usually computationally too expensive to process
densely sampled feature trajectories. 2D motion segmentation methods [18, 9]
may be fast but produce over-segmented results when the background features
exhibit large depth variation.

In this paper, we address the background identification problem based on two
observations that we believe to be true most of the times. Firstly, the background
should be visible in every frame, even though it may not occupy the largest area
in these frames. Secondly, as long as there is enough camera motion such that
there is enough turnover of the background features, i.e., enough new background
features enter into the field of view, collecting all these background features
together will usually make them the group with the largest number of feature
trajectories. Therefore, the background identification problem becomes that of
linking the new features into their proper groups as they enter into view. This is
done via some features that are visible in both the old and the new frames, but
of the details, more later. While there might also be turnover of the foreground
objects, they usually cannot be linked together as one group.

Since we assume that there is enough camera motion, most trajectories will
not be visible throughout the entire duration. Thus we divide the video into
multiple short overlapping clips (Fig. 1 (a)) and from the many potential back-
ground motion groups identified from the short clips (Fig. 1 (b)), we attempt to
link these groups and then identify the linked group that is globally the most
dominant, i.e., largest. For the linking step, we construct a directed graph with
the local motion candidates being the nodes, and two nodes from neighboring
video clips are connected by an edge if they share common trajectories, with
the weight of the edge being related to the size of the groups involved. Then we
search through all the possible motion paths (Fig. 1 (c)) that traverse from the
first video clip to the last one. The optimal motion path is the one that covers
the largest amount of feature trajectories, and thus corresponds to the desired
background motion. Finally, to deal with foreground objects with intermittent
motions and thus being labelled wrongly as background during the frames when
they are not moving, we enforce global consistency in the trajectory labeling to
rectify the errors (Fig. 1 (d)).
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Fig. 1: Pipeline of our background feature identification method. (a) Divide se-
quence into multiple overlapping clips {Ci} Red points in (b) and (d) are feature
trajectories in video clips. Red arrows in (c) is the global dominant rigid motion
that contains the largest amount of feature trajectories.

To describe the motions in the local clips, we use a set of epipolar geometries
(EG) computed from neighboring video frames. Therefore, our method can ef-
fectively handle videos with large depth variation. Our method is much simpler
compared to the existing motion segmentation techniques, since we are only con-
cerned with the background motion and treat all other motions as foreground
motions. Our motion estimation method is very fast, and the whole pipeline can
run very efficiently even with densely sampled trajectories.

2 Related Work

While the aim of video object segmentation is to segment out the foreground
objects from a video sequence, this approach can indeed be used to perform back-
ground extraction. However, many of these works require some degree of human
intervention, such as the semi-supervised methods [1, 26, 8, 22, 21, 16] which re-
quire a small amount of manual annotation, and the fully-supervised methods
[2, 31, 6] which require repeating result correction by the user. Our work is com-
pletely autonomous, like the unsupervised methods of video object segmentation
[5, 11, 19, 27, 24, 29, 10]. However, the underlying assumption of our work is less
brittle compared to those subscribed to by these works. For instance, [10, 29] rely
on the ability of object proposals to detect the foreground objects; this might
fail to work when the foreground objects have complex non-compact shapes. [19,
27] detect foreground objects by analysing the 2D motion field based on a simple
assumption that they usually move differently from their surroundings. However,
the 2D motions of some background objects may also have this property if the
background has large depth variation.

Trajectory-based motion segmentation methods usually produce multiple in-
dependent motion groups; however, they usually stop short of actually identify-
ing the background motion, or just use a simple background metric such as size.
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Furthermore, due to the computational demand of the 3D motion segmentation
methods [25, 4, 12, 28], these works lack the ability to deal with large amount
of feature trajectories. For long and densely sampled feature trajectories, some
fast 2D methods [18, 9] may be used. However, their results may become over-
segmented when the figure-ground is complex, for instance, scenes with large
depth variation. Our method not only processes large amount of trajectory in
an efficient way, but also handle videos with complex scene structures.

In addition to the above approaches, Bideau and Learned-Miller [3] proposed
a probabilistic model to segment all the moving objects. Similar to many of the
above approaches, their method cannot handle scenes with large foreground
objects and may face difficulties when dealing with intermittent motions. Zhang
et al.’s work [30] built a directed graph from local motion groups; this approach is
closely related to ours. Our method is different from theirs in two aspects. Most
importantly, we identify the background motion as the one with the largest
amount of feature trajectories in the aggregate, while their method is based
on the conjecture that the background trajectory matrix should exhibit a lower
rank. This assumption is a serious qualification: it will not work if the foreground
motions are also rigid. Another difference is that our method tries to find as
many rigid motions as possible in each video clip, instead of committing to a
clean segmentation for all the feature trajectories based on traditional motion
segmentation methods. This allows us to recover from errors that might arise at
the local clip levels.

3 Algorithm Overview

Given a dynamic video with large foreground objects, we first extract feature
trajectories {T0, ..., Ti} using the method [23]. We followed the instruction from
[23] and used the authors codes to generate the feature trajectories. Trajectories
are extracted at a fixed interval in both horizontal and vertical directions. Our
algorithm takes these trajectories as input and outputs those belong to the static
background by estimating the dominant rigid motion in the video. The system
pipeline is shown in Fig. 1.

The system first divides the input video into many short overlapping video
clips of variable lengths, i.e.,, {C0, ..., Ci} (Fig. 1 (a)). Inside each video clip Ci,
we propose multiple motion candidates {M0

i , ...,M
m
i }, which contain different

sizes of trajectory groups (Fig. 1 (b)). Each Mm
i represents a rigid motion inside

Ci. The global background motion for the entire video is a collection of the
background motions in these video clips, i.e., select one Mm

i for each Ci.

Since the background motions inside the video clips may not always be the
majority one with the presence of large foreground objects, we identify it using
a graph search method in a global manner (Fig. 1 (c)). Specifically, we construct
a directed graph with Mm

i in each Ci as graph nodes. Directed edges are only
created from nodes in Ci to those in Ci+1 with shared trajectories. Among all
the possible motion paths that start from the very first clip to the last one, we
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select the one that contains the largest amount of feature trajectories as our
global background motion.

For objects with intermittent motions, i.e. they may be static in some video
clips, their motions in those clips may be wrongly labeled as background. There-
fore, we further perform a temporal consistency check and background motion
refinement to rectify those wrongly labeled trajectories (Fig. 1 (d)).

4 Motion Estimation in Video Clips

Given a clip C with time window W , we divide the feature trajectories into three
categories, i.e., {T ti }W . The indicator t is set according to the following rules.

t =


1, Ti is always visible within W (e.g., T5 and T13 in Fig.2)

0, Ti is partially visible within W (e.g., T25 in Fig.2)

−1, Ti is invisible within W

(1)

The indicator t of a trajectory Ti is set to 1 if the trajectory lives throughout
the entire time window (we call them full-length trajectories inside the time
window), otherwise, it is set to 0 or −1. This labeling of feature trajectories will
be used to facilitate dividing the input video into overlapping video clips.

T

W
j k

5

F ( j , k )

T13

T25

Ti

Ti+8

p
i
j p

i
k

Fig. 2: Motion model defined by a set of feature trajectories inside a clip C with
time window W . Red points are tracked features on each trajectory.

4.1 Video Clips Generation

Starting from the first video frame, we keep adding new frames to expand the
time window W0 of the first video clip C0 as long as the number of the full-length
feature trajectories inside C0, i.e. {T ti }

t=1
C0

, is more than 80% of all the visible
trajectories inside it, as define below,

|{T ti }t=1
C0
|

|{T ti }t=1
C0
|+ |{T ti }t=0

C0
|
≥ 0.8 (2)
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The next video clip C1 starts from the middle frame of C0 and expands in the
same way. We repeat this process until the end of the video sequence is reached.

We experimentally set the 80% ratio here to achieve a balance between
enough camera movement within a clip and adequate trajectory overlap with
the next video clip. As a result, long video clips will be generated when the
camera movement is small. This ensures that even under small camera move-
ment, there will always be enough motion cues within a particular clip for robust
motion estimation.

Fig. 3: Examples of motion candidates in a video clip. Full-length trajectories
inside the green rectangles are used to estimate the best-fitting motion models.
Red points represent feature trajectories that are labeled as members of the
motion candidates, while blue points are non-member feature trajectories.

4.2 Motion Model

In our method, a rigid motion M defined by a set of trajectories {T ti }
t=0,1
C is

represented by a series of fundamental matrices
{
F (j,k)

}0<|j−k|≤r
C

, where j, k
are the video frame indices inside clip C (see Fig. 2). Here, r is empirically set to
five as the feature tracking error is usually acceptable within this range for good
fundamental matrix estimation. We estimate the fundamental matrix F (j,k) by
applying the 8-point algorithm [7] on the feature matches extracted from these
trajectories that are both visible at frames j and k.

To decide if a trajectory Ti belongs to a known rigid motion
{
F (j,k)

}0<|j−k|≤r
C

,
we compute its geometric errors based on the point-to-epipolar-line distance.
Specifically, for each F (j,k), if Ti is both visible at frames j and k, we extract a
feature match (pji , p

k
i ) from it (see Fig. 2) and compute its geometric error with

respect to F (j,k) as follows:

g(pji , p
k
i , F

(j,k)) = d(pki , F
(j,k)pji ), (3)
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where pji and pki are all homogeneous coordinates and d denotes the Euclidean
point-to-line distance. If the error is smaller than a threshold εf (εf = 1.5 in our
implementation), we mark this feature match as a positive match. If more than
90% of the tested feature matches from Ti are marked as positive, we label Ti
as a member of the rigid motion.

4.3 Motion Estimation in Video Clips

Knowing that the background features may not constitute the majority in a video
clip, we cannot hypothesize the background motion in the regular RANSAC
fashion, i.e. randomly select eight full-length trajectories in RANSAC iterations.
Instead, we adopt a local scanning scheme to effectively detect multiple motion
candidates inside each clip.

For each video clip Ci, we first divide the starting frame of Ci into overlapping
cells, e.g. 30% overlap with a uniform size L × L. For each cell, we collect the
full-length trajectories inside it, and estimate a best-fitting motion in the regular
RANSAC fashion. Specifically, in each RANSAC iteration, we randomly select
eight full-length trajectories to compute a motion as described in Sec. 4.2. Then,
we label the rest of the full-length trajectories inside the cell and count the inliers.
If the inliers of the final best-fitting motion exceeds 80% of all the full-length
trajectories within that cell, we regard the estimated motion Mm

i as a plausible
background motion candidate for Ci. Otherwise, it is discard. Note that we only
use full-length trajectories here to ensure that we can compute a motion with a
minimum eight trajectories.

After the RANSAC model fitting for all the single cells, we obtain a set of
motion candidates {Mm

i }. Since the background region may consist of several
discrete parts across the image domain due to the large dynamic foreground
motions and the estimated motions from single cells can be locally biased, we
also perform the model fitting process on combinations of the single cells that
yield {Mm

i }. In our experiments, we find that combinations of up to three single
cells are usually sufficient for robust background motion estimation. Eventually,
successful motions from these combined cells together with those from the single
cells form the final motion candidate set for Ci

These motion candidates are estimated using full-length trajectories inside
local cells. We still need to decide the membership of other trajectories inside the
clip with respect to each of motion candidates. Fig. 3 shows some labeling results
of the motion candidates. As we can see, unlike traditional motion segmenta-
tion methods that perform a clean segmentation of the trajectories and assign a
unique label to each Ti, our method usually generates multiple overlapping mo-
tion groups. Most importantly, since the motion candidates are estimated from
densely overlapping cells, there is a high chance that the background will be the
majority in at least one of these cells, and thus the true background motion can
be estimated.
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5 Dominant Motion Path Estimation

Once we obtain the motion candidates in each video clip, we construct a directed
graph with these motion candidates as graph nodes (see Fig. 1 (c)). For two
neighboring video clips Ci and Ci+1, we create a directed edge between two
motion candidates if there exist some common trajectories between them, e.g.
M j
i and Mn

i in Ci are both connected to Mk
i+1 in Ci+1.

5.1 Graph Edge Weight

Among the multiple motion paths that traverse from the first video clip to the
last, we now seek the optimal one that has the largest sum of trajectories along
its path, i.e. the dominant rigid motion. A feature trajectory Ti may live through
multiple video clips and it may not always be the member of the motions along
the path. For better trajectory counting along a motion path, we divide each Ti
into N sub-trajectories, where N is the number of video clips it spans. We then
assign each sub-trajectory with a value of v = 1

N . With this simple normalization,
we are now ready to count the number of trajectories in the following manner.

For an edge between M j
i and Mk

i+1, an edge weight is defined as

ej,ki,i+1 =
∑
c

G(Tc,M
k
i+1) · vc +

∑
n

G(Tn,M
k
i+1) · vn, (4)

where vc are the values of sub-trajectories common to both M j
i and Mk

i+1, and
vn are the values of those in Mk

i+1 that have newly appeared in Ci+1. Therefore,
we favor those strong connections, e.g. edge between Mn

i and Mk
i+1 in Fig. 4

that have larger number of shared trajectories, because a consistent background
motion path should have maximum overlapping trajectory groups.

G(Ti,M) is a weighting term that reflects the geometric error of a sub-
trajectory under a certain motion candidate. It is defined as:

G(Ti,M) = exp

(
−g

i
M · giM
2σ2

)
, (5)

where σ = 0.15, and giM is the average geometric error of trajectory Ti under
motion M (see Eq. (3)). When a motion candidate is connected to multiple
motions with similar number of shared trajectories, it will favor the connection
with lower fitting error.

5.2 Optimal Path Search

Given a starting motion candidate M j
0 in the first video clip and an ending one

Mk
q in Cq, we estimate the optimal motion path from M j

0 toMk
q that contains the

largest number of trajectories by defining an objective function that maximizes
the edge weights:

P (M j
0 ,M

k
q ) = max

(n,k)∈Φ

{
P (M j

0 ,M
n
q−1) + en,kq−1,q

}
, (6)
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where Φ is the set of connected edges from all motion candidates in Cq−1 to

Mk
q . When q = 1, we have P (M j

0 ,M
k
1 ) = ej,k0,1 + Ω(M j

0 ), where Ω(M j
0 ) is the

sum of the sub-trajectories’ values inside M j
0 , weighted by their corresponding

geometric errors as in Eq. (4).
This optimal motion path searching problem between a motion candidate

Mm
0 in C0 to any other candidate Mm

i in Ci can be easily solved by dynamic
programming. Finally, the global optimal motion path, starting from the first
video clip to the last one, is selected by the following:

Pdom = max
j,k

{
P (M j

0 ,M
k
S−1)

}
, (7)

where S is the total number of the video clips.

Mi
j

Mi
n

Mi+1
k

CiVideo clip Ci+1Video clip 

Fig. 4: Trajectory counting between two connected motions. Green circles: shared
trajectories between M j

i and Mk
i+1. White circles: shared trajectories between

Mn
i and Mk

i+1. Yellow circles: newly appeared trajectories in Ci+1 that belong
to Mk

i+1.

6 Background Trajectory Labeling

After obtaining the optimal motion path Pdom, i.e. background motion group, we
label the sub-trajectories inside the selected motion candidates as background.
Since a feature trajectory usually lives through multiple clips, and the optimal
motion path may give its sub-trajectories different labels due to reasons like
intermittent motion of the foreground objects or motion estimation errors, we
need to perform a temporal consistency check for all the trajectories and use only
reliable ones to compute the motion model of the global background motion.

Specifically, given the background motion path, we first identify reliable back-
ground feature trajectories that are entirely covered by the path, i.e. those whose
all sub-trajectories are labelled as background. Then, we compute the global
background motion model Mback, using those reliable background trajectories
as described in Sec. 4.2. Note that the time window of Mback covers the entire
video. Finally, we use Mback to label all the feature trajectories in the video. And
the labelled background trajectories will be the initial output of our algorithm.



10 K. Lin et al.

6.1 Local Trajectory Label Filtering

Due to tracking errors, some background feature trajectories, especially those
close to object boundaries, may be wrongly labeled as non-background trajec-
tories, while most of its neighbors are correctly labeled. To obtain spatially-
smooth but edge-preserving labeling results, we apply a local filtering process
on the labeled trajectories based on their color similarity and spatial-temporal
connectivity. Specifically, we regard two trajectories Ti and Tj as neighbors in
the spatial-temporal domain if they have at least one shared video frame and
their minimum distance inside these shared frames is less than a threshold (5%
of the frame width in our implementation). For each pair of such trajectory
neighbors, we assign a weight wi,j to them, defined as follows:

wi,j = exp

(
− d2s

2σ2
d

)
· exp

(
− d2c

2σ2
c

)
, (8)

where ds is the maximum distance between Ti and Tj inside their shared frames
and dc is the average RGB color difference of them respectively. We set σd to
2% of the frame width and σc = 0.18 in all our experiments.

If a feature trajectory Ti is labeled as background initially, we assign a value
L(Ti) = 1.0 to it. Otherwise, L(Ti) = 0. The new label of Ti is then determined
by the following local filtering operation:

L(Ti)
∗ =

∑
j∈Ne(i)

wi,j · L(Tj), (9)

where Ne(i) is the set of trajectory neighbors of Ti. If L(Ti)
∗ > 0.5, we set the

new label of Ti as background. Otherwise, it is labeled as non-background trajec-
tory. The filtering step produces the final results for background segmentation.

7 Experiments

We compare our method with several most recent state-of-the-art motion seg-
mentation and background identification methods, which include the motion
trajectory segmentation method [9], dense binary motion segmentation method
[3], and the robust background identification method by Zhang et al. [30]. These
methods represent different approaches for background identification tasks. The
experiments are conducted with several well-known public datasets, where high
quality ground truth foreground masks are provided. Specifically, we include
FBMS-59 [18] (55 videos used), DAVIS [20] (32 videos used), Complex Back-
ground Data Set [17] (CBDS), Camouflaged Animals Data Set [3] (CADS),
and the videos used in [30] for our analysis. These datasets contain various types
of dynamic video (e.g. freely-moving camera, large depth variation, small fore-
ground movement, highly dynamic scenes). Note that we discard some videos
from FBMS-59 [18] and DAVIS [20] that violate the following criteria: (1)
Available foreground mask should cover all the moving objects in the scenes. (2)
The static background, regardless of its size, should always be visible. (3) No
severe lens distortion in the video.
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Fig. 5: Visual comparison with Keuper et al. [9]. Rows (b) and (e) are results
from [9]. Rows (c) and (f) are our results. The background features are shown
in red and the non-background features are in green.

Method
Precision (%) Recall (%) F-score

FBMS DAVIS FBMS DAVIS FBMS DAVIS

Keuper 95.5 99.5 89.9 91.8 91.8 95.4

Ours 95.0 99.0 98.3 98.3 96.4 98.6

Table 1: Comparison of precision and recall on datasets FBMS and DAVIS
with Keuper et al. [9].

7.1 Comparison with Keuper et al. [9]

Keuper et al.’s method [9] is currently the state-of-the-art 2D motion segmenta-
tion method. To compare with their method, we test both methods on datasets
FBMS-59 [18] and DAVIS [20]. The input feature trajectories are extracted
by [23] for both methods. Since the output of [9] are multiple groups of feature
trajectories, we select the one that contains the largest amount of trajectories
and label the features inside as background. The comparison of average precision
and recall for background features identification is shown in Tab. 1. As we can
see from the table, our method achieves similar high accuracy as Keuper et al.’s
method, while the recall of our method is significantly better. Fig. 5 shows some
typical cases that may fail Keuper et al.’s method. Firstly, their method may
not work well on scenes with large depth variation (top two cases in Fig. 5),
which is a typical limitation of 2D motion segmentation methods without using
a projective motion model. Secondly, when the background is severely occluded
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by the foreground moving objects (bottom left case in Fig. 5), their method may
fail to track the background motion, and instead, creates new motion groups.
Finally, since their method utilizes color information along with other motion
cues in their energy function, it may over-segment the background region if it
contains components with large color difference (bottom right case in Fig. 5).
Our method, on the other hand, can very well handle such difficult cases.

Original frame Ground truth mask Result from [3] Our result
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Fig. 6: Visual comparison with Bideau and Learned-Miller’s method [3].

7.2 Comparison with Bideau and Learned-Miller’s method [3]

We also compare our method with Bideau and Learned-Miller’s method [3],
which is a recent foreground object segmentation method. The datasets we use
in this experiment are the Complex Background Data Set from [17] and the
Camouflaged Animals Data Set from their own work. Since the main purpose of
their method is segmenting foreground objects and the objects in these datasets
are relatively small, we compute the precision and recall of pixels/features that
locate on the foreground moving objects instead of background this time. The
results are reported in Tab. 2. As we can see, in most cases, our method achieves
better precision and recall. In general, our method produces more accurate and
complete segmentation of the foreground objects, see examples in Fig. 6. The
method proposed by [3], on the other hand, has difficulty dealing with foreground
intermittent motions (‘chameleon’ sequence in Fig. 6), which are explicitly han-
dled in our method by utilizing global motion cues.

7.3 Comparison with Zhang et al. [30]

To evaluate the performance of our method on videos with large foreground ob-
jects, we compare our method with Zhang et al.’s method [30] on the highly dy-
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namic videos used in their work. Some segmentation results are shown in Fig. 7.
As we can see, our method can also produce very good segmentation results on
these videos. Since we use projective motion model in our motion estimation step,
the estimated background motion usually covers the entire background region.
The motion segmentation method by Zhang et al. may produce over-segmented
results as reported in their paper (yellow and green points on the background
wall in Fig. 7 (a)). Therefore, it requires further post-processing to merge these
background motion groups. Also, the background metric used in their method
may be violated if the foreground motions are also rigid motions or nearly rigid
motions (Fig. 7 (e)). Our background metric is based on the total number of
feature trajectories a rigid motion contains in the entire video, which is proved
to be more robust according to our experiment results.

Sequence
Bideau [3] Ours

preci. recall preci. recall

C
B
D
S

[1
7
] ‘drive’ 0.36 0.90 0.72 0.63

‘forest ’ 0.81 0.77 0.79 0.82
‘parking ’ 0.897 0.89 0.902 0.92
‘store’ 0.91 0.78 0.94 0.84
‘traffic’ 0.73 0.83 0.83 0.85

C
A
D
S

[3
]

‘chameleon’ 0.96 0.53 0.94 0.66
‘frog ’ 0.49 0.38 0.50 0.40

‘glowwormbeetle’ 0.84 0.88 0.92 0.94
‘scorpion1 ’ 0.46 0.08 0.24 0.22
‘scorpion2 ’ 0.58 0.48 0.66 0.56
‘scorpion3 ’ 0.83 0.41 0.84 0.31
‘scorpion4 ’ 0.66 0.76 0.79 0.74

‘snail ’ 0.95 0.90 0.98 0.86
‘stickinsect ’ 0.06 0.17 0.20 0.31

Table 2: Comparison of precision and recall on datasets CBDS and CADS with
Bideau [3].

7.4 Limitations and Discussions

Our method may not work well in some special cases. Firstly, for videos with
many short feature trajectories (only 2 ∼ 3 feature points on a trajectory) ex-
tracted from non-rigid objects like river and sea, where the features on these
subtle dynamically moving objects may not violate the epipolar constraint dur-
ing their short lifetime. Therefore, they may be wrongly labeled as background.
Secondly, for videos captured by camera that hardly moves, if the foreground
motion is also rigid and occupies the majority of the scene all the time (e.g.
a video recorded by a standing person with a close-up view of a running train
in front), our method may also fail to identify the correct background features.
Computational wise, our method usually takes less than five minutes to process
a video of around 100 frames and 50,000 trajectories on a PC with 2.4GHz CPU.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 7: Comparison with Zhang et al. [30]. Row (a), (c), and (e) are results from
[30]. Row (b), (d), and (f) are our results.

8 Conclusion

In this work, we propose a robust background feature identification method that
can handle moving foreground objects that are large or exhibit intermittent mo-
tions. Our method is designed based on the assumption that the background
motion will contain the largest amount of feature trajectories when the local
background trajectories are aggregated over the entire sequence. Accordingly,
we develop a local-to-global dominant motion group identification pipeline. Since
the motions are characterized using fundamental matrices, there is no issue with
over-segmentation, problem that plagues the 2D motion segmentation approach.
With careful design, our motion estimation method can efficiently handle large
amount of trajectories and robustly propose potential rigid motions in video
clips. The comprehensive experiment results show that our method outperforms
several most recent state-of-the-art motion segmentation methods both quanti-
tatively and qualitatively.
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