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Abstract Understanding crowd behaviour in video is challenging for computer vi-
sion. There have been increasing attempts on modelling crowded scenes by in-
troducing ever larger property ontologies (attributes) and annotating ever larger
training datasets. However, in contrast to still images, manually annotating video
attributes needs to consider spatio-temporal evolution which is inherently much
harder and more costly. Critically, the most interesting crowd behaviours captured in
surveillance videos (e.g. street fighting, flash mobs) are either rare, thus have few ex-
amples for model training, or unseen previously. Existing crowd analysis techniques
are not readily scalable to recognise novel (unseen) crowd behaviours. To address
this problem, we investigate and develop methods for recognising visual crowd be-
havioural attributes without any training samples, i.e. zero-shot learning crowd be-
haviour recognition. To that end, we relax the common assumption that each indi-
vidual crowd video instance is only associated with a single crowd attribute. Instead,
our model learns to jointly recognise multiple crowd behavioural attributes in each
video instance by exploring multi-attribute co-occurrence as contextual knowledge
for optimising individual crowd attribute recognition. Joint multi-label attribute pre-
diction in zero-shot learning is inherently non-trivial because co-occurrence statis-
tics does not exist for unseen attributes. To solve this problem, we learn to predict
cross-attribute co-occurrence from both online text corpus and multi-label anno-
tation of videos with known attributes. Our experiments show that this approach
to modelling multi-attribute context not only improves zero-shot crowd behaviour
recognition on the WWW crowd video dataset, but also generalises to novel be-
haviour (violence) detection cross-domain in the Violence Flow video dataset.
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1 Introduction

Crowd behaviour analysis is important in video surveillance for public security and
safety. It has drawn increasing attention in computer vision research over the past
decade [51, 47, 50, 36, 42, 41]. Most existing methods employ a video analysis pro-
cessing pipeline that includes: Crowd scene representation [51, 47, 50, 36], defini-
tion and annotation of crowd behavioural attributes for detection and classification,
and learning discriminative recognition models from labelled data [42, 41]. How-
ever, this conventional pipeline is limited for scaling up to recognising ever increas-
ing number of behaviour types of interest, particularly for recognising crowd be-
haviours of no training examples in a new environment. Firstly, conventional meth-
ods rely on exhaustively annotating examples of every crowd attribute of interest
[41]. This is often implausible nor scalable due to the complexity and the cost of an-
notating crowd videos which requires spatio-temporal localisation. Secondly, many
crowd attributes may all appear simultaneously in a single video instance, e.g. “out-
door”, “parade”, and “fight”. To achieve multi-label annotation consistently, it is
significantly more challenging and costly than conventional single-label multi-class
annotation. Moreover, the most interesting crowd behaviours often occur rarely, or
have never occurred previously in a given scene. For example, crowd attributes such
as “mob”, “police”, “fight” and “disaster” are rare in the WWW crowd video dataset,
both relative to others and in absolute numbers (see Fig. 1). Given that such at-
tributes have few or no training samples, it is hard to learn a model capable of
detecting and recognising them using the conventional supervised learning based
crowd analysis approach.

In this chapter, we investigate and develop methods for zero-shot learning (ZSL)
[23] based crowd behaviour recognition. We want to learn a generalisable model
on well annotated common crowd attributes. Once learned, the model can then
be deployed to recognise novel (unseen) crowd behaviours or attributes of inter-
est without any annotated training samples. The ZSL approach is mostly exploited
for object image recognition: A regressor[43] or classifier[23] is commonly learned
on known categories to map a image’s visual feature to the continuous semantic
representation of corresponding category or the discrete human-labelled semantic
attributes. Then it is deployed to project unlabelled images into the same seman-
tic space for recognizing previously unseen object categories [23, 43, 10, 1]. There
have also been recent attempts on ZSL recognition of single-label human actions in
video instances [53, 2] where similar pipeline is adopted. However, for ZSL crowd
behaviour recognition, there are two open challenges. First, crowd videos contain
significantly more complex and cluttered scenes making accurate and consistent in-
terpretation of crowd behavioural attributes in the absence of training data very chal-
lenging. Second, crowd scene videos are inherently multi-labelled. That is, there are
almost always multiple attributes concurrently exist in each crowd video instance.
The most interesting ones are often related to other non-interesting attributes. Thus
we wish to infer these interesting attributes/behaviours from the detection of non-
interesting but more readily available attributes. However this has not been suffi-
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(a) Thumbnails of WWW crowd video dataset
and attributes[41]
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(b) Frequencies of attributes

Fig. 1: A thumbnail visualisation and a summary on the popularities of all 94 at-
tributes in the WWW crowd video dataset [41].

ciently studied in crowd behaviour recognition, not to mention in the context of
zero-shot learning.

It has been shown that in a fully supervised setting, exploring co-occurrence of
multi-labels in a common context can improve the recognition of each individual
label [55, 16, 26]. For example, the behavioural attribute “protest” [41] is more
likely to occur in “outdoor” rather than “indoor”. Therefore, recognising the in-
door/outdoor attribute in video can help to predict more accurately the “protest”
behaviour. However, it is not only unclear how, but also non-trivial, to extend this
idea to the ZSL setting. For instance, predicting a previously unseen behaviour “vi-
olence” in a different domain [19] would be much harder than the prediction of
“protest”. As it is unseen, it is impossible to leverage the co-occurrence here as
we have no a priori annotated data to learn their co-occurring context. The prob-
lem addressed in this chapter is on how to explore contextual co-occurrence among
multiple known crowd behavioural attributes in order to facilitate the prediction of
an unseen behavioural attribute, likely in a different domain.

More precisely, in this chapter we develop a zero-shot multi-label attribute con-
textual prediction model (Fig. 2). We make the assumption that the detection of
known attributes helps the recognition of unknown ones. For instance, a putative
unknown attribute such as “violence” may be related to known attributes “outdoor”,
“fight”, “mob”, and “police” among others. Therefore, high confidence in these
attributes would support the existence of “violence”. Specifically, our model first
learns a probabilistic P-way classifier on P known attributes, e.g. p(“outdoor”|x).
Then we estimate the probability of each novel (unseen) attribute conditioned on
the confidence of P known attributes, e.g. p(“violence”|“outdoor”). Recall that due
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Fig. 2: In model training, we learn word-vector representations of training attributes
from an external text corpus (context of text corpus), and their visual co-occurrence
from the training video annotations (context of attribute annotations). A bilinear
mapping M between pairs of word vectors is trained to predict the log visual co-
occurrence statistics logci j. Visual co-occurrence probabilities can be estimated for
any pairs of known or novel (unseen) attributes. To enable the prediction of a novel
attribute “violence” using the context of known attributes, we first learn a recogniser
for each known attribute given its visual features, e.g. p(“mob”|x); we then use the
trained context model to estimate the conditional probability P(“violence”|“mob”)
between novel and known attributes.

to “violence” in this example being a novel attribute, this conditional probability
cannot be estimated directly by tabulation of annotation statistics. To model this
conditional, we consider two contextual learning approaches. The first approach re-
lies on the semantic relatedness between the two attributes. For instance, if “fight” is
semantically related to “violence”, then we would assume a high conditional prob-
ability p(“violence”|“ f ight”). Crucially, such semantic relations can be learned in
the absence of annotated video data. This is achieved by using large text corpora
[14] and language models [29, 33]. However, this text-only based approach has
the limitation that linguistic relatedness may not correspond reliably to the visual
contextual co-occurence that we wish to exploit. For example, the word “outdoor”
has high linguistic semantic relatedness, e.g. measured by a cosine similarity, with
“indoor”, whilst they would never co-occur in video annotations. Therefore, our
second approach to conditional probability estimation is based on learning to map
from pairwise linguistic semantic relatedness to visual co-occurence. Specifically,
on the known training attributes, we train a bilinear mapping to map the pair of
training word-vectors (e.g. v(“ f ight”) and v(“mob”)) to the training attributes’ co-
occurrence. This bilinear mapping can then be used to better predict the conditional
probability between known and novel/unseen attributes. This is analogous to the
standard ZSL idea of learning a visual-semantic mapping from a set of single at-
tributes and re-using this mapping across different unseen attributes. Here, we focus
instead on a set of attribute-pairs to learn co-occurrence mapping, and re-using this
pairwise mapping across new attribute pairs.
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As a proof-of-concept case study, we consider the task of violent behaviour
(event) detection in videos. This task has received increasing interest in recent years
[19], but it is challenging due to the difficulty of obtaining violent event videos for
training reliable recognisers. In this chapter, we demonstrate our approach by train-
ing our model on an independent large WWW crowd-attribute video dataset, which
does not contain “violence” as a known attribute, and then apply the model to violent
event detection on the Violent Flow video dataset [19].

In summary, we make the following contributions in this chapter: (1) For the first
time, we investigate zero-shot learning for crowd behaviour recognition to over-
come the costly and semantically ambiguous video annotation of multi-labels. (2)
We propose a contextual learning strategy which enhances novel attribute recogni-
tion through context prediction by estimating attribute-context co-occurrence with
a bilinear model. (3) A proof-of-concept case study is presented to demonstrate the
viability of transferring zero-shot recognition of violent event cross-domain with
very promising performance.

2 Related Work

2.1 Crowd Analysis

Crowd analysis is one of the central topics in computer vision research for surveil-
lance [17]. There are a variety of tasks including: (1) Crowd density estimation
and person counting [7, 27], (2) crowd tracking [3, 36], and (3) crowd behaviour
recognition [4, 50, 41]. There are several challenges in crowd behaviour analysis.
First of all, one requires both informative and robust visual features from crowd
videos. Although simple optical flow [52, 36, 40], tracklets [57, 58], or a combina-
tion of motion and static features [25] have been adopted. None of them is both
informative and robust. More desirable Scene-level features can be further con-
structed from these low-level features, using probabilistic topic models [50, 52] or
Gaussian mixtures [40]. However, these mid-level representations are mostly scene-
specific, with a few exceptions such as [52] which models multiple scenes to learn a
scene-independent representation. Second, for recognition in different scenes, exist-
ing methods rely heavily upon the assumption of the availability of sufficient obser-
vations (a large number of repetions with variations) from these scenes in order to
either learn behaviour models from scratch [50, 25, 40], or inherit models from re-
lated scenes [52]. To generalize models across scenes, studies have proposed scene-
invariant crowd/group descriptors inspired by socio-psychological and biological
research [42], and more recently from deep learning mined crowd features [41]. In
addition to these purpose-built crowd features, dense trajectory features [49] captur-
ing both dynamic (motion boundary) and static textural information have also been
adopted for crowd analysis [41]. For learning a scene-invariant model, the method
of [41] requires extensive manual annotation of crowd attributes: The WWW crowd
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video dataset [41] has 94 attributes captured by over 10,000 annotated crowd videos,
where each crowd video is annotated with multiple attributes. The effort required
for annotating these videos is huge. This poses significant challenge to scale up
the annotation of any larger video dataset from diverse domains. Third, often the
most interesting crowd behaviour is also novel in a given scene/domain. That is,
the particular behavioural attribute has not been seen previously in that domain. To
address these challenges, in this study we explore a different approach to crowd be-
haviour recognition, by which crowd attribute context is learned from a large body
of text descriptions rather than relying on exhaustive visual annotations, and this se-
mantic contextual knowledge is exploited for zero-shot recognition of novel crowd
behavioural attributes without labelled training samples.

2.2 Zero-Shot Learning

Zero-shot learning (ZSL) addresses the problem of constructing recognizers for
novel categories without labelled training data (unseen) [23]. ZSL is made possible
by leveraging an intermediate semantic space that bridges visual features and class
labels (semantics). In general, the class labels can be obtained by manually labelled
attributes [23, 11], word-vector embeddings [43, 53], structured word databases
such as the WordNet [37, 14], and co-occurrence statistics from external sources
[28].
Attributes Attributes are manually defined binary labels of mid-level concepts
[23] which can be used to define high-level classes, and thus bridge known and un-
known classes. Traditional supervised classifiers can be trained to predict attributes
rather than categories. In the testing phase, recognisers for new classes can then be
defined based on novel classes’ attributes, e.g. Direct Attribute Prediction (DAP)
[23], or relations to known classes by the attributes, e.g. Indirect Attribute Predici-
ton (IAP) [23]. This intuitive attribute based strategy inspired extensive research
into ZSL. However, attributes themselves are manually annotated and thus suffer
from: (i) The difficulty of determining an appropriate ontology of attributes; (ii)
Prohibitive annotation cost, in particular for videos due to their spatio-temporal na-
ture; and (iii) labelling each video with a large vocabulary of attributes is particularly
costly and ambiguous.

Note that attributes in the context of a ZSL semantic representation are different
from the attributes we aim to predict in this chapter. In the attribute-ZSL case, all
attributes are pre-defined and annotated in order to train supervised classifiers to
generate a representation that bridges known and un-known high-level classes for
multi-class ZSL prediction. In our case, we want to predict multiple crowd attributes
for each video. That is, our final goal is multi-label ZSL prediction, as some of these
attributes are zero-shot, i.e. not pre-defined or annotated in training data.
WordNet As an alternative to attributes, WordNet [9] is a large English lexical
database which organises words in groups (aka synsets). WordNet is notably ex-
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ploited for the graph structure which provides a direct relatedness measurement
between classes as a path length between concepts [38, 14]. The IAP model can
be implemented without attribute annotation by replacing the novel to known class
relation by WordNet induced relation. However, due to the absence of explicit repre-
sentation for each individual word, the WordNet semantics are less likely to gener-
alize to ZSL models with alternative training losses (e.g. ranking loss and regression
loss) which require explicit embedding of words.
Co-occurrence Studies have also explored external sources for measuring the re-
lation between known and novel classes. In particular, web hit count has been con-
sidered as a source to induce a co-occurrence based representation [38, 28]. Intu-
itively, two labels/concepts are treated closely related if they often co-occur in search
engine results. As with the WordNet based approaches, co-occurrence models are
not able to produce explicit representations for classes therefore are not compatible
with learning alternative losses.
Word-Vector The word-vector representation [29, 43] generated by unsupervised
learning on text corpora has emerged as a promising representation for ZSL in that:
(i) As the product of unsupervised learning on existing text corpora, it avoids manual
annotation bottlenecks; (ii) Semantic similarity between words/phrases can be mea-
sured as cosine distance in the word-vector space thus enables probabilistic views
of zero-shot learning, e.g. DAP[23] and semantic inter-relations [14], and training
with alternative models, e.g. ranking loss [1, 10] and regression loss [43, 53].

2.3 Multi-Label Learning

Due to the multiple aspects of crowd behaviour to be detected/recognised, videos are
often annotated with more than one attribute. The multi-attribute nature of crowd
video, makes crowd behaviour understanding a multi-label learning (MLL) [55]
problem. MLL [55] is the task of assigning a single instance simultaneously to mul-
tiple categories. MLL can be decomposed into a set of independent single-label
problems to avoid the complication of label correlation [54, 5]. Although this is
computationally efficient, ignoring label correlation produces sub-optimal recogni-
tion. Directly tackling the joint multi-label problem through considering all possible
label combinations is intractable, as the size of the output space and the required
training data grow exponentially w.r.t. the number of unique labels [45]. As a com-
promise, tractable solutions to correlated multi-label prediction typically involve
considering pairwise label correlations [13, 35, 46], e.g. using conditional random
fields (CRF)s. However, all existing methods require to learn these pairwise label
correlations in advance from the statistics of large labeled datasets. In this chap-
ter, we solve the challenge of multi-label prediction for labels without any existing
annotated datasets from which to extract co-occurrence statistics.
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2.4 Multi-Label Zero-Shot Learning

Although zero-shot learning is now quite a well studied topic, only a few studies
have considered multi-label zero-shot learning [12, 28]. Joint multi-label prediction
is challenging because conventional multi-label models require pre-computing the
label co-occurrence statistics, which is not available in the ZSL setting. The study
given by [12] proposed a Direct Multi-label zero-shot Prediction (DMP) model. This
method synthesises a power-set of potential testing label vectors so that visual fea-
tures projected into this space can be matched against every possible combination
of testing labels with simple NN matching. This is analogous to directly consider-
ing the jointly multi-label problem, which is intractable due to the size of the label
power-set growing exponentially (2n) with the number of labels being considered.
An alternative study was provided by [28]. Although applicable to the multi-label
setting, this method used co-occurrence statistics as the semantic bridge between vi-
sual features and class names, rather than jointly predicting multiple-labels that can
disambiguate each other. A related problem is to jointly predict multiple attributes
when attributes are used as the semantic embedding for ZSL [18]. In this case, the
correlations of mid-level attributes, which are multi-labelled, are exploited in order
to improve single-label ZSL, rather than the inter-class correlation being exploited
to improve multi-label ZSL.

3 Methodology

We introduce in this section a method for recognising novel crowd behavioural
attributes by exploring the context from other recognisable (known) attributes. In
section 3.1, we introduce a general procedure for predicting novel behavioural at-
tributes based on their relation to known attributes. This is formulated as a prob-
abilistic graphic model adapted from [23] and [15]. We then give the details in
section 3.2 on how to learn a behaviour predictor that estimates the relations be-
tween known and novel attributes by inferring from text corpus and co-occurrence
statistics of known attribute annotations.

Let us first give an overview of the notations used in this chapter in Table 1.
Formally we have training dataset T S = {XS,YS,VS} associated with P known at-
tributes and testing dataset T T = {XT ,YT ,VT} associated with Q novel/unseen
attributes. We denote the visual feature for training and testing videos as XS =
[x1, · · ·xNS ] ∈ RDx×NS and XT = [x1, · · ·xNT ] ∈ RDx×NT , multiple binary labels for
training and testing videos as YS = [ỹ1, · · · ỹNS ]∈{0,1}P×NS and YT = [y∗1, · · ·y∗NT

]∈
{0,1}Q×NT , and the continuous semantic embedding (word-vector) for training and
testing attributes as VS = [v1 · · ·vP] ∈ RDv×P and VT = [v1 · · ·vQ] ∈ RDv×Q. Note
that according to the zero-shot assumption, the training and testing attributes are
disjoint i.e. ∀p ∈ {1 · · ·P},q ∈ {1 · · ·Q} : vp ∈ VS,vq ∈ VT ,vp 6= vq.
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Table 1: Notation Summary

Notation Description
NS; NT Number of training/source instances ; testing/target instances
Dx; Dv Dimension of visual feature; of word-vector embedding
P; Q Number of training/source attributes ; testing/target attributes
X ∈ RDx×N ; x Visual feature matrix for N instances; column representing one instance
Y ∈ {0,1}P×N ; y Binary labels for N instances with P (or Q) labels; column representing one instance
V ∈ RDv×P; v Word-Vector embedding for P (or Q) attributes; column representing embedding for one attribute

3.1 Probabilistic Zero-Shot Prediction

To predict novel attributes by reasoning about the relations between known and
novel attributes, we formulate this reasoning process as a probabilistic graph (see
Fig. 3).

x y
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Fig. 3: A probablistic graphical representation of a context-aware multi-label zero-
shot prediction model.

Given any testing video x, we wish to assign it with one or many of the P known
attributes or Q novel attributes. This problem is equivalent to inferring a set of con-
ditional probabilities p(y∗|x) = {p(y∗q|x)}q=1···Q and/or p(ỹ|x) = {p(ỹp|x)}p=1···P.
To achieve this, given the video instance x, we first infer the likelihood of it being
one of the P known attributes as p(y|x) = {p(yp|x)}p=1···P. Then, given the rela-
tion between known and novel/known attributes as conditional probability P(y∗|y)
or P(ỹ|y), we formulate the conditional probability similar to Indirect Attribute Pre-
diction (IAP) [23, 14] as follows:
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p(y∗q|x) =
P

∑
p=1

p(y∗q|yp)p(yp|x)

p(ỹp̃|x) =
P

∑
p=1

p(ỹp̃|yp)p(yp|x)
(1)

The zero-shot learning task is to infer the probabilities {p(y∗q|x)}p=1···P for unseen
labels {y∗q}. We estimate the multinomial conditional probability of known attributes
p(yp|x) based on the output of a probabilistic P-way classifier, e.g. SVM or Softmax
Regression with probability output. Then the key to the success of zero-shot predic-
tion is to estimate the known to novel contextual attribute relation as conditional
probabilities {p(y∗q|yp)}. We introduce two approaches to estimate this contextual
relation.

3.2 Modelling Attribute Relation from Context

In essence, our approach to the prediction of novel attributes depends on the predic-
tion of known attributes and then predicting the novel attributes based on the con-
fidence of each known attribute. The key to the success of this zero-shot prediction
is therefore appropriately estimating the conditional probability of novel attribute
given known attributes. We first consider a more straightforward way to model this
conditional by exploiting the relation encoded by a text corpus [14]. We then extend
this idea to predict the expected visual co-occurrence between novel and known
attributes without labelled samples of the novel classes.

3.2.1 Learning Attribute Relatedness from Text Corpora

The first approach builds on semantic word embedding [14]. The semantic embed-
ding represents each English word as a continuous vector v by training a skip-gram
neural network on a large text corpus [29]. The objective of this neural network is
to predict the adjacent c words to the current word wt , as follows:

1
T

T

∑
t=1

∑
−c≤ j≤c, j 6=0

p(wt+ j|wt) (2)

The conditional probability is modelled by a softmax function, a normalised proba-
bility distribution, based on each word’s representation as a continuous vector:

p(wt+ j|wt) =
exp(v>t+ jvt)

W
∑
j=1

exp(v>t+ jvt)

(3)



Zero-Shot Crowd Behaviour Recognition 11

By maximizing the above objective function, the learned word-vectors V = {v}
capture contextual co-occurrence in the text corpora so that frequently co-occurring
words result in high cumulative log probability in Eq (2). We apply the softmax
function to model conditional attribute probability as Eq (4) where γ is a temperature
parameter.

p(y∗q|yp) =
exp( 1

γ
v>q vS

p)

P
∑

p=1
exp( 1

γ
v>q vS

p)

(4)

This can be understood intuitively from the following example: An attribute “Shop-
ping” has high affinity with attribute “ShoppingMall” in word-vector inner product
because they co-occur in the text corpus. Our assumption is that the existence of
known video attribute “Shopping” would support the prediction of unseen attribute
“ShoppingMall”.

3.2.2 Context Learning from Visual Co-Occurrence

Although attribute relations can be discovered from text context as described above,
these relations may not ideally suit crowd attribute prediction in videos. For ex-
ample, the inner product of vec(“Indoor”) and vec(“Outdoor”) is 0.7104 which is
ranked the 1st w.r.t. “Indoor” among 93 attributes in the WWW crowd video dataset.
As a result, the estimated conditional probability p(ỹIndoor|yOutdoor) is the highest
among all {p(ỹIndoor|yp)}p=1···P. However, whilst these two attributes are similar
because they occur nearby in the text semantical context, it is counter-intuitive for
visual co-occurrence as a video is very unlikely to be both indoor and outdoor.
Therefore in visual context, their conditional probability should be small rather than
large.

To address this problem, instead of directly paramaterising the conditional prob-
ability using word-vectors, we use pairs of word vectors to predict the actual vi-
sual co-occurrence. More precisely, we train a word-vector→co-occurrence predic-
tor based on an auxiliary set of known attributes annotated on videos, for which both
word-vectors and annotations are known. We then re-deploy this learned predictor
for zero-shot recognition on novel attributes. Formally, given binary multi-label an-
notations YS on training video data, we define the contextual attribute occurrence as
C = YSYS>. The occurrence of j-th attribute in the context of i-th attribute is thus
ci j of the C. The prevalence of i-th attribute is defined as ci = ∑ j ci j. The normalized
co-occurrence thus defines the conditional probability as:

p(ỹ j|ỹi) =
ci j

ci
(5)

The conditional probability can only be estimated based on visual co-occurrence
in the case of training attributes with annotations YS. To estimate the conditional
probability for testing data of novel attributes without annotations YT , we consider
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to predict the expected co-occurrence based on a bilinear mapping M from the pair
of word-vectors. Specifically, we approximate the un-normalized co-occurrence as
exp(v>i Mv j) = ci j. To estimate M, we optimise the regularised linear regression
problem:

J =
P

∑
i

P

∑
j

w(ci j)
(

v>i Mv j− logci j

)2
+λ ||M||2F , (6)

where λ is the regularisation strength, and a weight function w(ci j) is applied to the
regression loss function above in order to penalise rarely occurring co-occurrence
statistics. We choose the weight function according to [28], which is:

w(ci j) =

(
ci j

Cmax

)(α·1(ci j≤Cmax))

(7)

where Cmax is a threshold of co-occurrence, α controls the increasing rate of the
weight function and the 1 is an indicator function. This bilinear mapping is related to
the model in [33], but differs in that: (i) The input of the mapping is the word-vector
representations v learned from the skip-gram model [29] in order to generalise to
novel attributes where no co-occurrence statistics are available. (ii) The mapping is
trained to account for visual compatibility, e.g. “Outdoor” is unlikely to co-occur
with “Indoor” in a visual context, although the terms are closely related in their
representations learned from the text corpora alone. The bilinear mapping can be
seamlessly integrated with the softmax conditional probability as:

p(y∗q|yp) =
exp(v>q Mvp)

∑
p

exp(v>q Mvp)
(8)

Note that by setting M = I, this conditional probability degenerates to the conven-
tional word-vector based estimation in Eq (4). The regression to predict visual co-
occurrence from word-vectors (Eq. (6)) can be efficiently solved by gradient descent
using the following gradient:

∇M =
P

∑
i=1

P

∑
j=1

f (ci j)
(

2viv>i Mv jv>j −2logci jviv>j
)
+2λM (9)

4 Experiments

We evaluate our multi-label crowd behaviour recognition model on the large WWW
crowd video dataset [41]. We analyse each component’s contribution to the overall
multi-label ZSL performance. Moreover, we present a proof-of-concept case study
for performing transfer zero-shot recognition of violent behaviour in the Violence
Flow video dataset [19].
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4.1 Zero-Shot Multi-Label Behaviour Inference

4.1.1 Experimental Settings

Dataset

The WWW crowd video dataset is specifically proposed for studying scene-independent
attribute prediction for crowd scene analysis. It consists of over 10,000 videos col-
lected from online resources of 8,257 unique scenes. The crowd attributes are de-
signed to answer the following questions: “Where is the crowd”, “Who is in the
crowd” and “Why is the crowd here”. All videos are manually annotated with 94
attributes with 6 positive attributes per video on average. Fig.4 shows a collection of
94 examples with each example illustrating each attribute in the WWW crowd video
dataset.

Data Split

We validated the ability to utilise known attributes for recognising novel attributes in
the absence of training samples on the WWW dataset. To that end, we divided the 94
attributes into 85 for training (known) and 9 for testing (novel). This was repeated
for 50 random splits. In every split, any video which has no positive label from the
9 novel attributes was used for training and the rest for testing. The distributions of
the number of multi-attributes (labels) per video over all videos and over the testing
videos are shown in Fig 5(a-b) respectively. Fig 5(c) also shows the distribution of
the number of testing videos over the 50 random splits. In most splits, the number of
testing videos is in the range of 3,000 to 6,000. The training to testing video number
ratio is between 2:1 to 1:1. This low training-testing ratio makes for a challenging
zero-shot prediction setting.

Visual Features

Motion information can play an important role in crowd scene analysis. To cap-
ture crowd dynamics, we extracted the improved dense trajectory features [49] and
performed Fisher vector encoding [34] on these features, generating a 50,688 di-
mensional feature vector to represent each video.

Evaluation Metrics

We evaluated the performance of multi-label prediction using five different met-
rics [55]. These multi-label prediction metrics fall into two groups: Example-based
metric and label-based metric. Example-based metrics evaluate the performance per
video instance and then average over all instances to give the final metric. Label-
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Indoor Outdoor Bazaar Shopping mall Stock market Airport

Platform (subway)passageway Ticket counter Street Escalator Stadium

Concert Stage Landmark Square School Beach

Park Rink Church Conference center Classroom Temple

Battlefield Runway Restaurant

(a) 27 attributes by “Where”

Customer Passenger Pedestrian Audience Performer Conductor

Choir Dancer Model Photographer Star Speaker

Protester Mob Parader Police Soldier Student

Teacher Runner Skater Swimmer Pilgrim Newly−wed couple

(b) 24 attributes by “Who”

Queue Stand Sit Kneel Walk Run

Wave Applaud Cheer Ride Swim Skate

Dance Photograph Board Wait Buy ticket Check−in/out

Watch performance Performance Band performance Chorus Red−carpet show Fashion show

War Fight Protest Disaster Parade Carnival

Ceremony Speech Graduation Conference Attend classes Wedding

Marathon Picnic Pilgrimage Shopping Stock exchange Dining

Cut the ribbon

(c) 44 attributes by “Why”

Fig. 4: Examples of all attributes in the WWW crowd video dataset [41].
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(a) Label distribution over all videos
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(b) Label distribution over testing videos
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(c) Distribution of testing videos

Fig. 5: Statistics of the dataset split for our experiments on the WWW dataset. (a)
and (b): The distributions of multi-label per video over all the videos and over the
testing videos respectively. (c): The distribution of the number of testing videos over
all 50 random splits.

based metrics evaluate the performance per label category and return the average
over all label categories as the final metric. The five multi-label prediction perfor-
mance metrics are:

• AUC - The Area Under the ROC Curve. AUC evaluates binary classification
performance. It is invariant to the positive/negative ratio of each testing label.
Random guess leads to AUC of 0.5. For multi-label prediction, we measure the
AUC for each testing label and average the AUC over all 50 splits to yield the
AUC per category. The final mean AUC is reported as the mean over all lable
categories.

• Label-based AP - Label-based Average Precision. We measure the average pre-
cision for each attribute as the average fraction of relevant videos ranked higher
than a threshold. The random guess baseline for label-based AP is determined by
the prevalence of positive videos.

• Example-based AP - Example-based Average Precision. We measure the aver-
age precision for each video as the average fraction of relevant label prediction
ranked higher than a threshold. Example-based AP focuses on the rank of at-
tributes within each instance rather than rank of examples for each label as for
label-based AP.

• Hamming Loss - Hamming Loss measures the percentage of incorrect predic-
tions from groundtruth labels. Optimal hamming loss is 0, indicating perfect
prediction. Due to the nature of hamming loss, the distance of [000] and [110]
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w.r.t. [010] are equal. Thus it does not differentiate over-estimation from under-
estimation. Hamming loss is a label-based metric. The final mean is reported as
the average over all instances.

• Ranking Loss - Ranking Loss measures, for every instance, the percentage of
negative labels ranked higher than positive labels among all possible positive-
negative label pairs. Similar to example-based AP, the ranking loss is example-
based metric focusing on pushing positive labels ahead of negative labels for
each instance.

Both AUC and label-based AP are label-based metrics, whilst exampled-based
AP, Hamming Loss and Ranking Loss are example-based metrics. Moreover, as a
loss metric, both Hamming Loss and Ranking Loss values are lower the better. In
contrary, AUC and AP values are higher the better. In a typical surveillance ap-
plication of crowd behaviour recognition in videos, we are interested in detecting
video instances of a particular attribute that triggers an alarm event, e.g. searching
for video instances with the “fighting” attribute. In this context, label-based perfor-
mance metrics such as AUC and Label-based AP are more relevant. Overall, we
present model performance evaluated by both types of evaluation metrics.

Parameter Selection

We have several parameters to tune in our model. Specifically, for training SVM
classifiers for known classes/attributes {p(y|x)} we set the slack parameter to a
constant 1. The ridge regression coefficient λ in Eq (6) is essential to avoid over-
fitting and numerical problems. It is empirically set to small non-zero value. We
choose λ = 1−3 in our experiments. For the temperature parameter γ in Eq (4), we
cross validate and found best value to be around 0.1. In addition, we use a word-
vector dictionary pre-trained on Google News dataset [29] with 100 billion words
where word-vectors are trained with 300 dimension (Dv = 300) and context size 5
(c = 5).

4.1.2 Comparative Evaluation

In this first experiment, we evaluated zero-shot multi-label prediction on WWW
crowd video dataset. We compared our context-aware multi-label ZSL models, both
purely text-based and visual co-occurrence based, against four contemporary and
state-of-the-art zero-shot learning models.

Sate-of-the-art ZSL Models

1. Word-Vector Embedding (WVE) [53]: The WVE model constructs a vector
representation ztr = g(ytr) for each training instance according to its category
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name ytr via word-vector embedding g(·) and then learns a support vector re-
gression f (·) to map the visual feature xtr. For testing instance xte, it is first
mapped into the semantic embedding space via the regressor f (xte). Novel cate-
gory yte ∈ Yte = {1, · · ·Q} is then mapped into the embedding space via g(yte).
Nearest neighbour matching is applied to match xte with category y∗ using the
L2 distance:

y∗ = arg min
yte∈Yte

|| f (xte)−g(yte)||22 (10)

We do not assume having access to the whole testing data distribution, so we
do not exploit transductive self-training and data augmentation post processing,
unlike in the cases of [53, 2].

2. Embarrassingly Simple Zero-Shot Learning (ESZSL) [39]: The ESZSL model
considers ZSL as training a L2 loss classifier. Specifically, given known cate-
gories’ binary labels Y and word-vector embedding Vtr, we minimise the L2
classification loss as:

min
M

N

∑
i=1
||x>i MVtr−yi||22 +Ω(M;Vtr,X) (11)

where Ω(M;Vtr,X) is a regulariser defined as:

Ω(M;Vtr,X) = λ1||MVtr||2F +λ2||X>M||2F +λ3||M||2F (12)

Novel categories are predicted by:

y∗ = x>teMVte (13)

3. Extended DAP (ExDAP) [12]: ExDAP was specifically proposed for multi-label
zero-shot learning [12]. This is an extension of single-label regression models to
multi-label. Specifically, given training instances xi, associated multiple binary
labels yi, and word-vector embedding of known labels Vtr, we minimize the L2
regression loss for learning a regressor M:

min
M

N

∑
i=1
||x>i M−Vtryi||22 +λ ||M||22 (14)

For zero-shot prediction, we minimize the same loss but w.r.t. the binary label
vector y with L2 regularization:

y∗ = arg min
y∗∈R
||x>teM−Vtey∗||22 +λ ||y∗||22 (15)

A closed-form solution exists for prediction:

y∗ =
(

V>teVte +λ I
)−1

V>tex>teM (16)
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4. Direct Multi-Label Prediction (DMP) [12]: DMP was proposed to exploit the
correlation between testing labels so to benefit the multi-label prediction. It
shares the same training procedure with ExDAP in Eq (14). For zero-shot pre-
diction, given testing categories Yte we first synthesize a power-set of all labels
P(Yte). The multi-label prediction y∗ is then determined by nearest neighbour
matching of visual instances mapped into word-vector embedding x>teM against
the synthesized power-set:

y∗ = arg min
y∗∈P(Yte)

||x>teM−Vtey∗||22 (17)

Context-Aware Multi-Label ZSL Models

1. Text Context-Aware ZSL (TexCAZSL): In our text corpus context-aware model
introduced in Section 3.2.1, only word-vectors learned from text corpora [29]
are used to model the relation between known and novel attributes p(y∗|y), as
defined by Eq (4). We implemented the video instance to known attributes prob-
abilities p(yp|x) as P linear SVM classifiers with normalized probability outputs
[6]. Novel attribute prediction p(y∗q|x) is computed by marginalising over the
known attributes defined by Eq (1).

2. Visual Co-occurrence Context-Aware ZSL (CoCAZSL): We further implemented
a visual co-occurrence context-aware model built on top of the TexCAZSL
model. This is done by predicting the expected co-occurrence context using bi-
linear mapping M, as introduced in Section 3.2.2. The known to novel attribute
relation is thus modelled by a weighted inner-product between the word-vectors
of known and novel attributes given by Eq (8). Novel attribute prediction p(y∗q|x)
is computed in the same way as for TexCAZSL, defined by Eq (1).

Quantitative Comparison

Table 2 shows the comparative results of our models against four state-of-the-art
ZSL models and the baseline of “Random Guess”, using all five evaluation metrics.
Three observations can be made from these results: (1) All zero-shot learning mod-
els can substantially outperform random guessing, suggesting that zero-shot crowd
attribute prediction is valid. This should inspire more research into zero-shot crowd
behaviour analysis in the future. (2) It is evident that our context-aware models im-
prove on existing ZSL methods when measured by the label-based AUC and AP
metrics. As discussed early under evaluation metrics, for typical surveillance tasks,
label-based metrics provide a good measurement on detecting novel alarm events in
the mist of many other contextual attributes in crowd scenes. (3) It is also evident
that our context-aware models perform comparably to the alternative ZSL models
under the example-based evaluation metrics, with the exception that DMP [12] per-
forms extraordinarily well on Hamming Loss but poorly on Ranking Loss. This is



Zero-Shot Crowd Behaviour Recognition 19

due to the direct minimization of Hamming Loss between synthesized power-set
and embedded video in DMP. However, since the relative order between attributes
are ignored in DMP, low performance in ranking loss as well as other label-based
metrics is expected.

Table 2: Comparison of zero-shot multi-label attribute prediction on the WWW
crowd video dataset. The ↑ and ↓ symbols indicate whether a metric is higher the
better or vice versa.

Feature Model Label-Based Example-Based
AUC ↑ AP ↑ AP ↑ Hamming Loss ↓ Ranking Loss ↓

- Random Guess 0.50 0.14 0.31 0.50 -
ITF WVE[53] 0.65 0.24 0.52 0.45 0.32
ITF ESZSL[39] 0.63 0.22 0.53 0.46 0.32
ITF ExDAP[12] 0.62 0.21 0.52 0.45 0.32
ITF DMP[12] 0.59 0.20 0.45 0.30 0.70
ITF TexCAZSL 0.65 0.24 0.52 0.43 0.32
ITF CoCAZSL 0.69 0.27 0.53 0.42 0.31

Qualitative Analysis

We next give some qualitative examples of zero-shot attribute predictions in Fig. 6.
To get a sense of how well the attributes are detected in the context of label-based
AP, we present the AP number with each attribute. Firstly, we give examples of de-
tecting videos matching some randomly chosen attributes (label-centric evaluation).
By designating an attribute to detect, we list the crowd videos sorted in the de-
scending order of probability p(y∗|x). In general, we observe good performance in
ranking crowd videos according to the attribute to be detected. The false detections
are attributed to the extremely ambiguous visual cues. E.g. 3rd video in “fight”, 5th
video in “police” and 2nd video in “parade” are very hard to interpret.

In addition to detecting each individual attribute, we also present some examples
of simultaneously predicting multiple attributes in Fig.7 (example-centric evalua-
tion). For each video we give the the prediction score for all testing attributes as
{p(y∗q|x)}q=1···Q . For the ease of visualization, we omit the the attribute with least
score. We present the example-based ranking loss number along with each video
to give a sense of how the quantitative evaluation metric relates to the qualitative
results. In general, ranking loss less than 0.1 would yield very good multi-label pre-
diction as all labels would be placed among the top 3 out of 9 labels to be predicted.
Whilst ranking loss around 0.3 (roughly the average performance of our CoCAZSL
model, see Table 2) would still give reasonable predictions by placing positive labels
in the top 5 out of 9.
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Fig. 6: Illustration of crowd videos ranked in accordance with prediction scores
(marginalized conditional probability) w.r.t. each attribute.

4.2 Transfer Zero-Shot Recognition in Violence Detection

Recognizing violence in surveillance scenario has an important role in safety and
security [19, 17]. However due to the sparse nature of violent events in day to day
surveillance scenes, it is desirable to exploit zero-shot recognition to detect violent
events without human annotated training videos. Therefore we explore a proof of
concept case study of transfer zero-shot violence detection. We learn to recognize
labelled attributes in WWW dataset [41] and then transfer the model to detect vi-
olence event in Violence Flow dataset [19]. This is zero-shot because we use no
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RankLoss=0.07

indoor picnic

speaker protest

church pilgrim

school stock exchange

RankLoss=0.07

sit stage

ceremony performer

runner conference

runway chorus

RankLoss=0.07

outdoor fashion show

dance parade

concert ride

runway customer

RankLoss=0.25

swimmer cut the ribbon

school classroom

protest skater

pilgrimage wedding

RankLoss=0.00

sit stage

kneel star

temple graduation

mob (subway)passageway

RankLoss=0.36

kneel protester

speaker escalator

conference buy ticket

school stock market

RankLoss=0.29

stadium dance

skater skate

runway choir

photograph battlefield

RankLoss=0.29

sit kneel

stage temple

mob star

(subway)passageway graduation

Fig. 7: Examples of zero-shot multi-label attribute prediction. Bars under each im-
age indicate the normalized score for testing attribtues. Blue and pink bars indicate
positive and negative ground-truth labels respectively.

annotated examples of violence to train, and violence does not occur in the label set
of WWW. It is contextual because the violence recognition is based on the predicted
visual co-occurrence between each known attribute in WWW and the novel violence
attribute. E.g., “mob” and “police” attributes known from WWW may support the
violence attribute in the new dataset.

4.2.1 Experiment Settings

Dataset

The Violence Flow dataset [19] was proposed to facilitate the study into classifying
violent events in crowded scenes. 246 videos in total are collected from online video
repositories (e.g. YouTube) with 3.6 seconds length on average. Half of the 246
video are with positive violence content and the another half are with non-violent
crowd contents. We illustrate example frames of both violent and non-violent videos
in Fig. 8

Data Split

A standard fully supervised 5-fold cross validation split was proposed by [19]. The
standard split partitions the whole dataset into 5 splits each of which is evenly di-
vided into positive and negative videos. For each testing split, the other 4 splits are
used as the training set and the left-out one is the testing set. Results are reported as
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(a) Violent videos

(b) Non-violent videos

Fig. 8: Example frames of violence flow dataset [19].

both the mean classification accuracy over 5 splits plus standard deviation and the
area under the ROC curve (AUC).

Beyond the standard cross validation split we create a new zero-shot experimen-
tal design. Our zero-shot split learns attribute detection models on all 94 attributes
from WWW dataset and then tests on the same testing set as the standard 5 splits
in [19]. We note that there are 123 overlapped videos between WWW and Violence
Flow. To make fair comparison, we exclude these overlapped videos from construct-
ing the training data for 94 attributes. In this way zero-shot prediction performance
can be directly compared with supervised prediction performance using AUC met-
ric. We define the event/attribute to be detected as the word “violence”.

Zero-Shot Recognition Models

We explore the transfer zero-shot violence recognition by comparing the same set of
zero-shot learning models as in Section 4.1.2: competitors WVE, ESZSL, ExDAP;
and our TexCAZSL and CoCAZSL.

Fully Supervised Model

To put zero-shot recognition performance in context, we also report fully supervised
models’ performance. These models are evaluated on the 5-fold cross-validation
split and the average accuracy and AUC are reported. Specifically, we report the
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best performance of [19] - linear SVM with VIolent Flows (ViF) descriptor and our
fully supervised baseline - linear SVM with Improved Trajectory Feature (ITF).

Results and Analysis

The results of both transfer zero-shot and supervised violence prediction are sum-
marised in Table 3. We make the following observations: Our context-aware models
perform consistently better than alternative zero-shot models, suggesting that con-
text does facilitate zero-shot recognition. Surprisingly, our zero-shot models more-
over perform very competitively compared to the fully supervised models. Our Co-
CAZSL (albeit with better ITF feature) beats the fully supervised Linear SVM with
ViF feature in AUC metric (87.22 v.s. 85.00). The context-aware model is also close
to the fully supervised model with the same ITF feature (87.22 v.s. 98.72). This is in
contrast to the common result in the literature were zero-shot recognition “works”,
but does so much worse than fully supervised learning. The promising performance
is partly due to modelling the co-occurrence on large known crowd attributes help
the correct prediction of known to novel attribute relation prediction.Overall the re-
sult shows that by transferring our attribute recognition model trained for a wide set
of 94 attributes on a large 10,000 video dataset, it is possible to perform effective
zero-shot recognition of a novel behaviour type in a new dataset.

Table 3: Evaluation of violence prediction in Violence Flow dataset: zero-shot ver-
sus fully supervised prediction (%).

Model Split Feature Accuracy AUC
WVE[53] Zero-Shot ITF 64.27±5.06 64.25
ESZSL[39] Zero-Shot ITF 61.30±8.28 61.76
ExDAP[12] Zero-Shot ITF 54.47±7.37 52.31
TexCAZSL Zero-Shot ITF 67.07±3.87 69.95
CoCAZSL Zero-Shot ITF 80.52±4.67 87.22
Linear SVM 5-fold CV ITF 94.72±4.85 98.72
Linear SVM[18] 5-fold CV ViF 81.30±0.21 85.00

5 Further Analysis

In this section we provide further analysis on the importance of the visual feature
used, and also give more insight into how our contextual zero-shot multi-label pre-
diction works by visualising the learned label-relations.
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5.1 Feature Analysis

We first evaluate different static and motion features on the standard supervised
attribute prediction task. Both hand-crafted and deeply learned features are reported
for comparison.

Static Features

We report the both the hand-crafted and deeply learned static feature from [41]
including Static Feature (SFH) and Deeply Learned Static Feature (DLSF). SFH
captures general image content by extracting Dense SIFT[24], GIST [31] and HOG
[8]. Color histogram in HSV space is further computed to capture global information
and LBP [56] is extracted to quantify local texture. Bag of words encoding is used
to create comparable features, leading to a 1536 dimension static feature. DLSF
is initialized using a pre-trained model for ImageNet detection task [32] and then
fine-tuned on the WWW attribute recognition task with cross-entropy loss.

Motion Features

We report both the hand-crafted and deeply learned motion features from [41] in-
cluding DenseTrack[48], spatio-temporal motion patterns (STMP) [21] and Deeply
Learned Motion Feature (DLMF) [41]. Apart from the reported evaluations, we
compare them with the improved trajectory feature (ITF) [49] with fisher vector
encoding. Though ITF is constructed in the same way as DenseTrack reported in
[41], we make a difference in that the visual codebook is trained on a collection
of human action datasets (HMDB51[22], UCF101 [44], Olympic Sports [30] and
CCV[20]).

Analysis

Performance on the standard WWW split [41] for static and motion features is re-
ported in Table 4. We can clearly observe that the improved trajectory feature is
consistently better than all alternative static and motion features. Surprisingly, ITF
is even able to beat deep features (DLSF and DLMF). We attribute this to ITF’s
ability to capture both motion information by motion boundary histogram (MBH)
and histogram of flow (HoF) descriptors and texture information by Histogram of
Gradient (HoG) descriptor.

More interestingly, we demonstrate that motion feature encoding model (fisher
vector) learned from action datasets can benefit the crowd behaviour analysis. Due
to the vast availability of action and event datasets and limited crowd behaviour data,
a natural extension work is to discover if deep motion model pre-trained on action
or event dataset can help crowd analysis.
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Table 4: Comparison between different visual features for attribute prediction.

Alternative Features Mean AUC
SFH [41] 0.81
DLSF [41] 0.87
DenseTrack [41] 0.63
DLMF [41] 0.68
SFH+DenseTrack [41] 0.82
DLSF+DLMF [41] 0.88
Our Features
Improved Trajectory Feature (ITF) 0.91

5.2 Qualitative Illustration of Contextual Co-occurrence
Prediction

Recall that the key step in our method’s approach to zero-shot prediction is to esti-
mate the visual co-occurrence (between known attributes and held out zero-shot at-
tributes) based on the textually derived word-vectors of each attributes. To illustrate
what is learned, we visualize the predicted importance of 94 attributes from WWW
in terms of supporting the detection of the held out attribute “violence”. The results
are presented as a word cloud in Fig. 9, where the size of each word/attribute p is
proportional to the conditional probability e.g. p(“violence”|yp). As we see from
Fig 9(a), attribute - “fight” is the most prominent attribute supporting the detection
of “violence”. Besides this, actions like “street”, “outdoor” and “wave” all support
the existence of “violence”, while ‘disaster’ and ‘dining’ among others do not. We
also illustrate the support of “mob” and “marathon” in Fig 9(b) and (c) respectively.
All these give us very reasonable importance of known attributes in supporting the
recognition of novel attributes.

6 Conclusions

Crowd behaviour analysis has long been a key topic in computer vision research. Su-
pervised approaches have been proposed recently. But these require exhaustively ob-
taining and annotating examples of each semantic attribute, preventing this strategy
from scaling up to ever expanding dataset sizes and variety of attributes. Therefore
it is worthwhile to develop recognizers that require little or no annotated training
examples for the attribute/event of interest. We address this by proposing a zero-
shot learning strategy in which recognizers for novel attributes are built without
corresponding training data. This is achieved by learning the recognizers for known
labelled attributes. For testing data, the confidence of belonging to known attributes
then supports the recognition of novel ones via attribute relation. We propose to
model this relation from the co-occurrence context provided by known attributes
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Fig. 9: Importantce of known attributes w.r.t. novel event/attributes. The fontsize of
each attributes is proportional to the conditional probability e.g. p(“violence”|yp).
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and word-vector embeddings of the attribute names from text corpora. Experiments
on zero-shot multi-label crowd attribute prediction prove the feasibility of zero-
shot crowd analysis and demonstrate the effectiveness of learning contextual co-
occurrence. A proof of concept case study on transfer zero-shot violence recognition
further demonstrates the practical value of our zero-shot learning approach , and its
superior efficacy compared to even fully supervised learning approaches.
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48. Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. Action recognition by
dense trajectories. In CVPR, 2011.

49. Heng Wang, Dan Oneata, Jakob Verbeek, Cordelia Schmid, Heng Wang, Dan Oneata, Jakob
Verbeek, and Cordelia Schmid A. A robust and efficient video representation for action recog-
nition. International Journal of Computer Vision, 2015.

50. Xiaogang Wang, Xiaoxu Ma, and W Eric L Grimson. Unsupervised activity perception in
crowded and complicated scenes using hierarchical bayesian models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2009.

51. X. Xu, T. M. Hospedales, and S. Gong. Discovery of shared semantic spaces for multi-scene
video query and summarization. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 2016.

52. Xun Xu, Shaogang Gong, and Timothy Hospedales. Cross-domain traffic scene understanding
by motion model transfer. In Proceedings of the 4th ACM/IEEE International Workshop on
ARTEMIS, 2013.

53. Xun Xu, Timothy Hospedales, and Shaogang Gong. Semantic embedding space for zero-shot
action recognition. In ICIP, 2015.

54. Min-Ling Zhang and Zhi-Hua Zhou. Ml-knn: A lazy learning approach to multi-label learning.
Pattern recognition, 2007.

55. Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learning algorithms. IEEE
Transactions on Knowledge and Data Engineering, 2014.
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